Computer Information Science

Overview

Computer Information Science Department courses at American River College are broken down into categories, including:
- CISA - Computer Applications
- CISC - Computer Core Classes
- CISN - Computer Networking
- CISP - Computer Programming
- CISS - Computer Security
- CISW - Web

Certificates and degree programs pull from multiple categories to make up a concentration of courses designed to help you succeed.

Roadmaps

Road maps lay out all of the courses you need to take for a given degree or certificate.

Get a Road map! Explore Ways to Complete These Programs (/academics/arc-program-road-maps)

Division Dean
Kirsten Corbin (/about-us/contact-us/faculty-and-staff-directory/kirsten-corbin)

Department Chair
Tak Auyeung (/about-us/contact-us/faculty-and-staff-directory/tak-auyeung)
Daniel Gilbert-Valencia (/about-us/contact-us/faculty-and-staff-directory/daniel-gilbert-valencia)

HomeBase
Business (/academics/homebases/business)

Division Business & Computer Science Division Office (/academics/business-and-computer-science-division-office)
Phone (916) 484-8361

Associate Degrees

A.S. in CIS: Computer Networking Management

This degree covers network administration technologies, techniques, and the hardware and software used in today’s business/enterprise networking environment. Major topics covered include installation, configuration, and troubleshooting of network operating systems. The degree stresses the knowledge and skills required for the day-to-day operation, business aspects, security and management of computer networks. This degree has three distinct concentrations with specific courses for each concentration track:

1. Microsoft Windows networking concentration, focusing on preparing for the Microsoft Certified Systems Engineer (MCSE) and/or the Microsoft Certified Systems Administrator (MCSA) certification.
2. Linux/Unix networking concentration, focusing on preparing for the administration of commercial Linux/Unix servers and network environments.
3. Cisco router and network administration concentration, which covers all the objectives of the Cisco Certified Network Associate (CCNA) certification exam.

Catalog Date: January 1, 2021

Degree Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 310</td>
<td>Business Communications (3)</td>
<td>3 - 4</td>
</tr>
<tr>
<td>or ENGWR 300</td>
<td>College Composition (3)</td>
<td></td>
</tr>
<tr>
<td>or ENGWR 480</td>
<td>Honors College Composition (3)</td>
<td></td>
</tr>
<tr>
<td>or ESLW 340</td>
<td>Advanced Composition (4)</td>
<td></td>
</tr>
<tr>
<td>CISA 315</td>
<td>Introduction to Electronic Spreadsheets</td>
<td>2</td>
</tr>
<tr>
<td>CISC 320</td>
<td>Operating Systems</td>
<td>1</td>
</tr>
<tr>
<td>CISC 323</td>
<td>Linux Operating System</td>
<td>1</td>
</tr>
<tr>
<td>CISC 350</td>
<td>Introduction to Data Communications</td>
<td>1</td>
</tr>
<tr>
<td>CISC 361</td>
<td>Microcomputer Support Essentials - Preparation for A+ Certification</td>
<td>3</td>
</tr>
<tr>
<td>CISS 310</td>
<td>Network Security Fundamentals</td>
<td>3</td>
</tr>
</tbody>
</table>

Subtotal Units: 14 - 15

CISCO Concentration

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISC 324</td>
<td>Intermediate Linux Operating System</td>
<td>1</td>
</tr>
<tr>
<td>[CISN 110]</td>
<td>Networking Technologies - Preparation for N+ Certification (2)</td>
<td>3 - 4</td>
</tr>
<tr>
<td>and CISN 111</td>
<td>Intermediate Networking Technologies (2)</td>
<td></td>
</tr>
<tr>
<td>or CISN 119</td>
<td>TCP/IP Protocols (3)</td>
<td></td>
</tr>
<tr>
<td>CISN 140</td>
<td>CISCO Networking Academy (CCNA): Networking Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>CISN 141</td>
<td>CISCO Networking Academy (CCNA): Routing Protocols and Concepts</td>
<td>3</td>
</tr>
<tr>
<td>CISN 142</td>
<td>CISCO Networking Academy (CCNA): LAN Switching and Wireless</td>
<td>3</td>
</tr>
<tr>
<td>CISN 143</td>
<td>CISCO Networking Academy (CCNA): Accessing the Wide Area Network</td>
<td>3</td>
</tr>
<tr>
<td>CISS 330</td>
<td>Implementing Internet Security and Firewalls</td>
<td>3</td>
</tr>
</tbody>
</table>
Linux Concentration

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISC 324</td>
<td>Intermediate Linux Operating System</td>
<td>1</td>
</tr>
<tr>
<td>CISN 110</td>
<td>Networking Technologies - Preparation for N+ Certification</td>
<td>2</td>
</tr>
<tr>
<td>CISN 111</td>
<td>Intermediate Networking Technologies</td>
<td>2</td>
</tr>
<tr>
<td>CISN 119</td>
<td>TCP/IP Protocols</td>
<td>3</td>
</tr>
<tr>
<td>CISN 120</td>
<td>Beginning Network Administration with Linux</td>
<td>3</td>
</tr>
<tr>
<td>CISN 121</td>
<td>Network Administration with Linux: LAN Services</td>
<td>2</td>
</tr>
<tr>
<td>CISN 122</td>
<td>Network Administration with Linux: Internet Services</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>A minimum of 3 units from the following:</td>
<td>3</td>
</tr>
<tr>
<td>CISP 400</td>
<td>Object Oriented Programming with C++ (4)</td>
<td></td>
</tr>
<tr>
<td>CISS 342</td>
<td>Implementing Linux Operating System Security (3)</td>
<td></td>
</tr>
</tbody>
</table>

Linux Concentration Units: 18
Total Units: 32 - 33

Windows Concentration

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISN 110</td>
<td>Networking Technologies - Preparation for N+ Certification</td>
<td>2</td>
</tr>
<tr>
<td>CISN 111</td>
<td>Intermediate Networking Technologies</td>
<td>2</td>
</tr>
<tr>
<td>CISN 300</td>
<td>Network Systems Administration</td>
<td>3</td>
</tr>
<tr>
<td>CISN 302</td>
<td>Intermediate Network Systems Administration</td>
<td>3</td>
</tr>
<tr>
<td>CISN 307</td>
<td>Windows Active Directory Services</td>
<td>3</td>
</tr>
<tr>
<td>CISN 308</td>
<td>Internetworking with TCP/IP (3)</td>
<td>3</td>
</tr>
<tr>
<td>or CISN 119</td>
<td>TCP/IP Protocols</td>
<td></td>
</tr>
</tbody>
</table>

Windows Concentration Units: 19
Total Units: 33 - 34

The CIS: Computer Networking Management Associate in Science (A.S.) degree may be obtained by completion of the required program, plus general education requirements, plus sufficient electives to meet a 60-unit total. See ARC graduation requirements.

Student Learning Outcomes

- WINDOWS CONCENTRATION:
- install, configure, monitor, manage, backup, and customize a Microsoft server.
- design, construct and apply group policies and NTFS file system permissions to secure files and network resources.
- design, construct and troubleshoot a Microsoft Active Directory network using Microsoft workstation and server operating systems.

- CISCO CONCENTRATION:
- design, evaluate, construct and implement a routed IP network using industry standard routing protocols and routing equipment, in a wired or wireless configuration.
- design, evaluate, construct and implement a multilayer switching network using switching protocols, such as Ethernet, in a wired or wireless configuration.
- design, install and test Wide Area Network (WAN) connectivity solutions.
- design and evaluate basic security and access solutions in a switched or routed LAN or WAN.
- design, evaluate, specify, and install various types of network media.

- LINUX/UNIX CONCENTRATION:
- install, configure, monitor, manage, backup, and customize a Linux server.
- design, evaluate and implement and troubleshoot typical Linux server services in the areas of user accounts and security, printing, web server, telnet server, firewall, email server, domain name service, dynamic host configuration protocol, network file system, and Microsoft Windows compatibility.

Career Information

This degree is designed for career/technical students who plan to enter the work force as well as working IT professionals that wish to upgrade their skills. Typical careers a student could expect to pursue include network technical support staff, network administrators, network designers, network systems engineer, network troubleshooters, and information systems security specialists.

A.S. in CIS: Computer Programming

This degree includes general topics in the field of computer programming as well as focused topics related to one commonly used programming language. General topics include the use of an operating system, and the translation of a problem statement into a generic program solution. Programming language-specific topics include syntax, program structuring, language constructs and proper programming methods.

Catalog Date: January 1, 2021

Degree Requirements
COURSE CODE COURSE TITLE UNITS
CISC 310 Introduction to Computer Information Science 3
CISP 350 Database Programming 3
Subtotal Units: 6

C++ concentration

COURSE CODE COURSE TITLE UNITS
[CISP 300 Algorithm Design/Problem Solving (3) 5 - 7
and CISP 360] Introduction to Structured Programming (4)
or CISP 480 Honors Introduction to Structured Programming (5)
CISP 400 Object Oriented Programming with C++ 4
CISP 430 Data Structures 4
C++ concentration Units: 13 - 15
Total Units: 19 - 21

Java concentration

COURSE CODE COURSE TITLE UNITS
[CISP 300 Algorithm Design/Problem Solving (3) 5 - 7
and CISP 360] Introduction to Structured Programming (4)
or CISP 480 Honors Introduction to Structured Programming (5)
CISP 401 Object Oriented Programming with Java 4
A minimum of 3 units from the following: 3
CISC 320 Operating Systems (1)
CISC 323 Linux Operating System (1)
CISC 324 Intermediate Linux Operating System (1)
CISP 310 Assembly Language Programming for Microcomputers (4)
CISP 362 Programming for Mobile Devices I (4)
CISP 363 Programming for Mobile Devices II (4)
Java concentration Units: 12 - 14
Total Units: 18 - 20

Visual Basic concentration

COURSE CODE COURSE TITLE UNITS
CISA 322 Design and Development of Desktop Database Applications 3
CISP 300 Algorithm Design/Problem Solving 3
CISP 370 Beginning Visual Basic 4
CISP 371 Intermediate Visual Basic 4
Visual Basic concentration Units: 14
Total Units: 20

The CIS: Computer Programming Associate in Science (A.S.) degree may be obtained by completion of the required program, plus general education requirements, plus sufficient electives to meet a 60-unit total. See ARC graduation requirements.

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- describe how programming relates to the development of an information system.
- develop programs using the top-down method.
- apply structured programming techniques.
- translate a detailed design document into a computer programming language solution.
- verify the syntactic correctness of a program.
- verify the logical correctness of a program.
- analyze the behavior of a program and locate defects.

Career Information

Upon completion of the computer programming degree, a student meets the minimum qualifications as an entry-level programmer/developer.

A.S. in CIS: Database Management

The CIS: Database Management degree focuses on relational database technology used in the business environment. The emphasis is on selecting the appropriate system platform for database deployment. Course work includes database system design and programming for desktop, enterprise and Internet platforms, structure query language (SQL) programming, introductory principles of modular programming, system design and problem solving, desktop operating systems, electronic spreadsheets and a variety of introductory business courses.

Catalog Date: January 1, 2021
Degree Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 101</td>
<td>Fundamentals of College Accounting (3)</td>
<td>3-4</td>
</tr>
<tr>
<td>or ACCT 301</td>
<td>Financial Accounting (4)</td>
<td></td>
</tr>
<tr>
<td>BUS 110</td>
<td>Business Economics (3)</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 302</td>
<td>Principles of Macroeconomics (3)</td>
<td></td>
</tr>
<tr>
<td>BUS 300</td>
<td>Introduction to Business</td>
<td>3</td>
</tr>
<tr>
<td>BUS 310</td>
<td>Business Communications (3)</td>
<td>3</td>
</tr>
<tr>
<td>or ENGWR 300</td>
<td>College Composition (3)</td>
<td></td>
</tr>
<tr>
<td>CISA 315</td>
<td>Introduction to Electronic Spreadsheets</td>
<td>2</td>
</tr>
<tr>
<td>CISA 329</td>
<td>Introduction to Database Management</td>
<td>1</td>
</tr>
<tr>
<td>CISA 322</td>
<td>Design and Development of Desktop Database Applications</td>
<td>3</td>
</tr>
<tr>
<td>CISC 310</td>
<td>Introduction to Computer Information Science</td>
<td>3</td>
</tr>
<tr>
<td>CISC 320</td>
<td>Operating Systems</td>
<td>1</td>
</tr>
<tr>
<td>CISP 300</td>
<td>Algorithm Design/Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>CISP 350</td>
<td>Database Programming</td>
<td>3</td>
</tr>
<tr>
<td>CISP 370</td>
<td>Beginning Visual Basic</td>
<td>4</td>
</tr>
<tr>
<td>CISW 300</td>
<td>Web Publishing</td>
<td>3</td>
</tr>
<tr>
<td>CISW 410</td>
<td>Middleware Web Scripting</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total Units:</td>
<td>39 - 40</td>
</tr>
</tbody>
</table>

The CIS: Database Management Associate in Science (A.S.) degree may be obtained by completion of the required program, plus general education requirements, plus sufficient electives to meet a 60-unit total. See ARC graduation requirements.

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- describe relational database technologies for desktop, enterprise and Internet platforms.
- explain and discuss database theory and principles.
- employ relational database technologies for either desktop, enterprise and Internet platforms to solve common business problems using standard database principles and practices.
- assess and document information system requirements.
- employ modular programming concepts in program development.
- design and code elementary programs encountered in business and government.
- identify interactive web publishing situations requiring database solutions.
- create interactive web database.
- analyze practical business problems and utilize critical thinking in the determination of alternative solutions.
- apply communication theory, effective writing techniques, and interpersonal communication skills to business situations.
- analyze and explain the nature and purpose of accounting and its function in business.

A.A. in CIS: Microcomputer Applications

This degree focuses on the use of the microcomputer and current, commonly used software to solve problems in a business environment. Course work includes microcomputer applications in database management, desktop publishing, electronic spreadsheets, presentation graphics, operating systems, word processing, and at least one programming language.

Catalog Date: January 1, 2021

Degree Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSTEC 300.1</td>
<td>Keyboarding/Applications: Beginning</td>
<td>1</td>
</tr>
<tr>
<td>CISA 126</td>
<td>Outlook: Basics (1)</td>
<td>1</td>
</tr>
<tr>
<td>or BUSTEC 126</td>
<td>Outlook: Basics (1)</td>
<td></td>
</tr>
<tr>
<td>CISA 127</td>
<td>Outlook: Tools (1)</td>
<td>1</td>
</tr>
<tr>
<td>or BUSTEC 127</td>
<td>Outlook: Tools (1)</td>
<td></td>
</tr>
<tr>
<td>CISA 305</td>
<td>Beginning Word Processing</td>
<td>2</td>
</tr>
<tr>
<td>CISA 306</td>
<td>Intermediate Word Processing</td>
<td>2</td>
</tr>
<tr>
<td>CISA 315</td>
<td>Introduction to Electronic Spreadsheets</td>
<td>2</td>
</tr>
<tr>
<td>CISA 316</td>
<td>Intermediate Electronic Spreadsheets</td>
<td>2</td>
</tr>
<tr>
<td>CISA 320</td>
<td>Introduction to Database Management</td>
<td>1</td>
</tr>
<tr>
<td>CISA 322</td>
<td>Design and Development of Desktop Database Applications</td>
<td>3</td>
</tr>
<tr>
<td>CISA 330</td>
<td>Desktop Publishing</td>
<td>2</td>
</tr>
<tr>
<td>CISA 340</td>
<td>Presentation Graphics</td>
<td>2</td>
</tr>
<tr>
<td>CISC 306</td>
<td>Introduction to Web Page Creation</td>
<td>1</td>
</tr>
<tr>
<td>CISC 310</td>
<td>Introduction to Computer Information Science</td>
<td>3</td>
</tr>
<tr>
<td>CISC 320</td>
<td>Operating Systems</td>
<td>1</td>
</tr>
<tr>
<td>CISC 323</td>
<td>Linux Operating System</td>
<td>1</td>
</tr>
<tr>
<td>CISP 370</td>
<td>Beginning Visual Basic</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>A minimum of 5 units from the following:</td>
<td>5</td>
</tr>
<tr>
<td>ACCT 341</td>
<td>Computerized Accounting</td>
<td></td>
</tr>
<tr>
<td>BUSTEC 313</td>
<td>Web based Conferencing and Presentations for the Business Professional (2)</td>
<td></td>
</tr>
<tr>
<td>CISA 160</td>
<td>Project Management Techniques and Software (3)</td>
<td></td>
</tr>
<tr>
<td>CISA 171</td>
<td>Introduction to Adobe Acrobat (1)</td>
<td></td>
</tr>
<tr>
<td>CISC 350</td>
<td>Introduction to Data Communications (1)</td>
<td></td>
</tr>
</tbody>
</table>
The CIS: Microcomputer Applications Associate in Arts (A.A.) degree may be obtained by completion of the required program, plus general education requirements, plus sufficient electives to meet a 60-unit total. See ARC graduation requirements.

Student Learning Outcomes

Upon completion of this program, the student will be able to:
- design and manage database tables, queries and forms.
- produce reports for use in a typical business environment.
- evaluate the basic computing needs of a business by developing associated documentation and presentations.
- create spreadsheet formulas and manipulate business data.
- compose and format typical business communications documents according to industry standards.
- combine data from different software applications into one document.
- compose simple computer programs using basic logic.
- apply file management techniques in organizing computer data.

A.S. in CIS: PC Support Management

The CIS: PC Support Management degree covers the use and maintenance of a microcomputer’s hardware, software and network connections in today’s business environment. Course work includes learning basic computer skills in configuration, use, and troubleshooting major hardware components, different operating systems, and applications in a standalone and network environment. Additionally, the degree introduces basic business and project management skills. This program covers all the objectives of the Computing Technology Industry Association (CompTIA) A+ certification exam.

Catalog Date: January 1, 2021

Degree Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 300</td>
<td>Introduction to Business</td>
<td>3</td>
</tr>
<tr>
<td>BUS 310</td>
<td>Business Communications</td>
<td>3</td>
</tr>
<tr>
<td>CISA 160</td>
<td>Project Management Techniques and Software</td>
<td>3</td>
</tr>
<tr>
<td>CISC 310</td>
<td>Introduction to Computer Information Science</td>
<td>3</td>
</tr>
<tr>
<td>CISC 320</td>
<td>Operating Systems</td>
<td>1</td>
</tr>
<tr>
<td>CISC 350</td>
<td>Introduction to Data Communications</td>
<td>1</td>
</tr>
<tr>
<td>CISC 351</td>
<td>Introduction to Local Area Networks</td>
<td>1</td>
</tr>
<tr>
<td>CISC 361</td>
<td>Microcomputer Support Essentials - Preparation for A+ Certification</td>
<td>3</td>
</tr>
<tr>
<td>CISC 362</td>
<td>Microcomputer and Applications Support</td>
<td>2</td>
</tr>
<tr>
<td>CISC 363</td>
<td>Microcomputer Support Technical - Preparation for A+ Certification</td>
<td>3</td>
</tr>
<tr>
<td>CISS 315</td>
<td>Ethical Hacking</td>
<td>3</td>
</tr>
</tbody>
</table>

A minimum of 6 units from the following:
- CISA 126 Outlook: Basics (1)
- or BUSTEC 126 Outlook: Basics (1)
- CISA 127 Outlook: Tools (1)
- or BUSTEC 127 Outlook: Tools (1)
- CISA 305 Beginning Word Processing (2)
- CISA 315 Introduction to Electronic Spreadsheets (2)
- CISA 328 Introduction to Database Management (1)
- CISA 340 Presentation Graphics (2)
- CISC 306 Introduction to Web Page Creation (1)
- CISC 323 Linux Operating System (1)

Total Units: 32

1Taken on the Windows operating system.

The CIS: PC Support Management Associate in Science (A.S.) degree may be obtained by completion of the required program, plus general education requirements, plus sufficient electives to meet a 60-unit total. See ARC graduation requirements.

Student Learning Outcomes

Upon completion of this program, the student will be able to:
- Identify the names, purpose, and characteristics of system components.
- Evaluate and demonstrate basic procedures for adding and removing field replaceable components for desktop computers.
Analyze and demonstrate the installation and troubleshooting of current operating systems, applications and basic networking technology used in industry.
Formulate back-up, recovery, and system protection plans for the operating system in a network environment.
Develop proficiency in customer service skills to effectively diagnose and communicate microcomputer software and hardware-related problems and solutions at the user level.
Demonstrate the techniques to manage a project, control costs, and schedule resources employing management software.
Recognize within the information technology (IT) field the diverse business environment associated with support issues.
Configure and implement data security methods for protecting computers and networks from unauthorized access.

A.S. in Computer Science

This degree provides a comprehensive exposure to programming languages, algorithms and problem solving in preparation for upper division computer science courses. The Computer Science degree includes substantial course work in mathematics required by most university computer science programs.

Catalog Date: January 1, 2021

Degree Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISP 300</td>
<td>Algorithm Design/Problem Solving (3)</td>
<td>5 - 7</td>
</tr>
<tr>
<td>and CISP 360</td>
<td>Introduction to Structured Programming (4)</td>
<td></td>
</tr>
<tr>
<td>or CISP 480</td>
<td>Honors Introduction to Structured Programming (5)</td>
<td></td>
</tr>
<tr>
<td>CISP 310</td>
<td>Assembly Language Programming for Microcomputers</td>
<td>4</td>
</tr>
<tr>
<td>CISP 400</td>
<td>Object Oriented Programming with C++</td>
<td>4</td>
</tr>
<tr>
<td>CISP 430</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>CISP 440</td>
<td>Discrete Structures for Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>MATH 400</td>
<td>Calculus I</td>
<td>5</td>
</tr>
<tr>
<td>MATH 401</td>
<td>Calculus II</td>
<td>5</td>
</tr>
</tbody>
</table>

Total Units: 30 - 32

The Computer Science Associate in Science (A.S.) degree may be obtained by completion of the required program, plus general education requirements, plus sufficient electives to meet a 60-unit total. See ARC graduation requirements.

Student Learning Outcomes

Upon completion of this program, the student will be able to:
- evaluate various programming language solutions to a proposed problem.
- recommend tools and techniques for each step in the development of a computer program.
- integrate the basic mathematical knowledge that is fundamental to computer science into the solutions of proposed problems.
- evaluate the theories and core techniques of computer science using scientific methods.

A.S. in Cybersecurity and Information Assurance

This program prepares IT professionals to apply knowledge and experience in network security, risk management, intrusion detection, remediation, and digital forensics to safeguard infrastructure and secure data and business operations. Courses deliver proven methods for information security using software analysis techniques, web engineering, cloud management, and networking strategies to prevent, detect, and mitigate cyberattacks. This program also provides preparation for several nationally recognized, high demand certifications in the field of Cybersecurity.

Catalog Date: January 1, 2021

Degree Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISN 140</td>
<td>CISCO Networking Academy (CCNA) Networking Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>CISN 141</td>
<td>CISCO Networking Academy (CCNA) Routing Protocols and Concepts</td>
<td>3</td>
</tr>
<tr>
<td>CISN 300</td>
<td>Network Systems Administration (3)</td>
<td>3</td>
</tr>
<tr>
<td>CISS 310</td>
<td>Network Security Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>CISS 315</td>
<td>Ethical Hacking</td>
<td>3</td>
</tr>
<tr>
<td>CISS 316</td>
<td>Cisco Networking Academy: CCNA Cybersecurity Operations</td>
<td>3</td>
</tr>
<tr>
<td>CISS 321</td>
<td>Scripting for Cyber Security</td>
<td>3</td>
</tr>
<tr>
<td>CISS 330</td>
<td>Implementing Internet Security and Firewalls</td>
<td>3</td>
</tr>
<tr>
<td>CISS 350</td>
<td>Disaster Recovery</td>
<td>3</td>
</tr>
<tr>
<td>CISS 360</td>
<td>Computer Forensics and Investigation</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units: 30

The Cybersecurity and Information Assurance Associate in Science (A.S.) degree may be obtained by completion of the required program, plus general education requirements, plus sufficient electives to meet a 60-unit total. See ARC graduation requirements.

Student Learning Outcomes

Upon completion of this program, the student will be able to:
- define best practices for configuring cyber defense and countermeasures.
- design organizational plans for securing data and while maintaining the confidentiality, integrity, and availability (CIA) of the information transmitted over communication networks.
- explain how security principles and cyber defense concepts impact organizational policies and practices.
- analyze security risks mitigation processes to identify, evaluate, prioritize, and prevent potential security threats.
- critique plans to secure and manage physical and virtual infrastructures for legal and secure cloud operations.
- outline legal issues that should be included within the security awareness training and education program of an organization.
- analyze applicable laws and policies to legally protect the organization against security incident.
- determine how to address vulnerabilities and threats in cellular and mobile network technologies.
- prioritize and establish a disaster recovery plan for the enterprise.
- develop security incident response plans that align to an organization’s security goals and objectives and maintain business continuity.

Career Information

A.A. in Technical Communications

This is an interdisciplinary course of study designed to prepare students for employment as professional writers and communicators in a variety of media intended to instruct and inform audiences. The degree program includes substantial course work in writing, information design, editing, page design, online help development, web site creation, and the use of industry standard applications.

Catalog Date: January 1, 2021

Degree Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 100</td>
<td>English for the Professional</td>
<td>3</td>
</tr>
<tr>
<td>CISA 305</td>
<td>Beginning Word Processing</td>
<td>2</td>
</tr>
<tr>
<td>CISW 300</td>
<td>Web Publishing</td>
<td>3</td>
</tr>
<tr>
<td>JOUR 300</td>
<td>Newswriting and Reporting</td>
<td>3</td>
</tr>
<tr>
<td>TECCOM 308</td>
<td>Introduction to Technical/Professional Communication</td>
<td>3</td>
</tr>
<tr>
<td>TECCOM 310</td>
<td>Writing Digital Content</td>
<td>1</td>
</tr>
<tr>
<td>TECCOM 330</td>
<td>Writing Technical Manuals</td>
<td>1</td>
</tr>
</tbody>
</table>

A minimum of 12 units from the following:

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTNM 328</td>
<td>Beginning Digital Photo Imagery (3)</td>
</tr>
<tr>
<td>ARTNM 330</td>
<td>Intermediate Digital Photo Imagery (3)</td>
</tr>
<tr>
<td>ARTNM 352</td>
<td>Design for Publication (3)</td>
</tr>
<tr>
<td>CISA 331</td>
<td>Intermediate Desktop Publishing (2)</td>
</tr>
<tr>
<td>CISW 310</td>
<td>Advanced Web Publishing (4)</td>
</tr>
<tr>
<td>CISW 321</td>
<td>Web Site Development using Dreamweaver (3)</td>
</tr>
<tr>
<td>CISW 400</td>
<td>Client-side Web Scripting (4)</td>
</tr>
<tr>
<td>CISW 410</td>
<td>Middleware Web Scripting (4)</td>
</tr>
<tr>
<td>ENGW 301</td>
<td>College Composition and Literature (3)</td>
</tr>
</tbody>
</table>

Total Units: 28

The Technical Communications Associate in Arts (A.A.) degree may be obtained by completion of the required program, plus general education requirements, plus sufficient electives to meet a 60-unit total. See ARC graduation requirements.

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- analyze audience information needs and propose solutions to aid the audience.
- design technical communication solutions for a variety of industry and government purposes.
- design and create web sites and help systems with effective visual design, navigation, and written content.
- design and publish printed pages with effective design, organization, content, and indexing.
- compose professional prose for a variety of audiences with a variety of purposes.
- compose and edit professional documents in grammatically correct, concise English.
- create and use style templates in a variety of industry standard software.

Career Information

Technical communicators may be employed in a variety of occupations in government, scientific firms, nonprofits, natural resources, finance, education, and high tech.

Certificates of Achievement

CIS: Computer Networking Management Certificate

The CIS: Computer Networking Management certificate provides instruction for entry-level and IT professionals aiming for skill enhancement on the specific knowledge and skills required to master one of three industry standard network technologies:
- Microsoft Windows networking concentration, focusing on preparing for the Microsoft Certified Systems Engineer (MCSE) and/or the Microsoft Certified Systems Administrator (MCSA) certification.
- Linux/Unix networking concentration, focusing on preparing for the administration of commercial Linux/Unix servers and network environments.
- Cisco router and network administration concentration, which covers all the objectives of the Cisco Certified Network Associate (CCNA) certification exam.

Catalog Date: January 1, 2021

Certificate Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISC 323</td>
<td>Linux Operating System</td>
<td>1</td>
</tr>
<tr>
<td>CISC 350</td>
<td>Introduction to Data Communications</td>
<td>1</td>
</tr>
<tr>
<td>CISC 361</td>
<td>Microcomputer Support Essentials - Preparation for A+ Certification</td>
<td>3</td>
</tr>
<tr>
<td>CISC 310</td>
<td>Network Security Fundamentals</td>
<td>3</td>
</tr>
</tbody>
</table>
CISCO Concentration

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISC 324</td>
<td>Intermediate Linux Operating System</td>
<td>1</td>
</tr>
<tr>
<td>CISN 140</td>
<td>CISCO Networking Academy (CCNA)tm: Networking Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>CISN 141</td>
<td>CISCO Networking Academy (CCNA)tm: Routing Protocols and Concepts</td>
<td>3</td>
</tr>
<tr>
<td>CISN 142</td>
<td>CISCO Networking Academy (CCNA)tm: LAN Switching and Wireless</td>
<td>3</td>
</tr>
<tr>
<td>CISN 143</td>
<td>CISCO Networking Academy (CCNA)tm: Accessing the Wide Area Network</td>
<td>3</td>
</tr>
</tbody>
</table>

CISCO Concentration Units: 13
Total Units: 21

Linux Concentration

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISC 324</td>
<td>Intermediate Linux Operating System</td>
<td>1</td>
</tr>
<tr>
<td>CISN 110</td>
<td>Networking Technologies - Preparation for N+ Certification</td>
<td>2</td>
</tr>
<tr>
<td>CISN 111</td>
<td>Intermediate Networking Technologies</td>
<td>2</td>
</tr>
<tr>
<td>CISN 119</td>
<td>TCP/IP Protocols</td>
<td>3</td>
</tr>
<tr>
<td>CISN 120</td>
<td>Beginning Network Administration with Linux</td>
<td>3</td>
</tr>
<tr>
<td>CISN 121</td>
<td>Network Administration with Linux: LAN Services</td>
<td>2</td>
</tr>
<tr>
<td>CISN 122</td>
<td>Network Administration with Linux: Internet Services</td>
<td>2</td>
</tr>
</tbody>
</table>

Linux Concentration Units: 15
Total Units: 23

Windows Concentration

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISN 110</td>
<td>Networking Technologies - Preparation for N+ Certification</td>
<td>2</td>
</tr>
<tr>
<td>CISN 111</td>
<td>Intermediate Networking Technologies</td>
<td>2</td>
</tr>
<tr>
<td>CISN 300</td>
<td>Network Systems Administration</td>
<td>3</td>
</tr>
<tr>
<td>CISN 302</td>
<td>Intermediate Network Systems Administration</td>
<td>3</td>
</tr>
<tr>
<td>CISN 307</td>
<td>Windows Active Directory Services</td>
<td>3</td>
</tr>
<tr>
<td>CISN 308</td>
<td>Internetworking with TCP/IP (3)</td>
<td>3</td>
</tr>
<tr>
<td>or CISN 119</td>
<td>TCP/IP Protocols (3)</td>
<td>3</td>
</tr>
</tbody>
</table>

Windows Concentration Units: 16
Total Units: 24

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- demonstrate competency in basic Microsoft Windows and Linux operating system terminology, command line interface commands, account management, and file management and storage.
- define networking terminology, protocols, industry standard models, and best practices for configuring network operating system services.
- configure and implement basic data security methods for protecting servers, workstations and networks from unauthorized access.
- evaluate and demonstrate basic procedures for troubleshooting and replacing field replaceable components in microcomputers.
- implement, evaluate and troubleshoot a transmission control protocol/internet protocol (TCP/IP) addressing scheme.
- define, implement, evaluate and troubleshoot the most common utilities and protocols of the TCP/IP suite.
- CISCO CONCENTRATION:
 - design, evaluate, construct and implement a routed network using TCP/IP and industry standard routing protocols and state of the technology routing equipment, in a wired or wireless configuration.
 - design, evaluate, construct and implement a multilayer switching network using switching protocols, such as Ethernet, in a wired or wireless configuration.
 - design, install and test Wide Area Network (WAN) connectivity solutions.
- LINUX/UNIX CONCENTRATION:
 - design and evaluate basic security and access solutions in a switched or routed LAN or WAN.
 - evaluate, specify, and install various types of network media.
- WINDOWS CONCENTRATION:
 - install, configure, monitor, manage, backup, and customize a Windows server.
 - design, construct and apply group policies and NTFS file system permissions to secure files and network resources.
 - design, construct and troubleshoot a Microsoft Active Directory network using Microsoft workstation and server operating systems.

CIS: Computer Programming Certificate

This certificate includes general topics in the field of computer programming as well as focused topics related to one commonly used programming language. General topics include the use of an operating system, and the translation...
of a problem statement into a generic program solution. Programming language-specific topics include syntax, program structuring, language constructs and proper programming methods.

Certificate Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISC 310</td>
<td>Introduction to Computer Information Science</td>
<td>3</td>
</tr>
<tr>
<td>CISC 320</td>
<td>Operating Systems</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Subtotal Units:</td>
<td>4</td>
</tr>
</tbody>
</table>

C++ concentration

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISP 300</td>
<td>Algorithm Design/Problem Solving (3)</td>
<td>5 - 7</td>
</tr>
<tr>
<td>and CISP 360</td>
<td>Introduction to Structured Programming (4)</td>
<td></td>
</tr>
<tr>
<td>or CISP 480</td>
<td>Honors Introduction to Structured Programming (5)</td>
<td></td>
</tr>
<tr>
<td>CISP 400</td>
<td>Object Oriented Programming with C++</td>
<td>4</td>
</tr>
<tr>
<td>CISP 430</td>
<td>Data Structures</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>A minimum of 1 unit from the following:</td>
<td></td>
</tr>
<tr>
<td>CISC 323</td>
<td>Linux Operating System (1)</td>
<td>1</td>
</tr>
<tr>
<td>CISC 324</td>
<td>Intermediate Linux Operating System (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C++ concentration Units:</td>
<td>14 - 16</td>
</tr>
<tr>
<td></td>
<td>Total Units:</td>
<td>18 - 20</td>
</tr>
</tbody>
</table>

Java concentration

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISP 300</td>
<td>Algorithm Design/Problem Solving (3)</td>
<td>5 - 7</td>
</tr>
<tr>
<td>and CISP 360</td>
<td>Introduction to Structured Programming (4)</td>
<td></td>
</tr>
<tr>
<td>or CISP 480</td>
<td>Honors Introduction to Structured Programming (5)</td>
<td></td>
</tr>
<tr>
<td>CISP 350</td>
<td>Database Programming</td>
<td>3</td>
</tr>
<tr>
<td>CISP 401</td>
<td>Object Oriented Programming with Java</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>A minimum of 2 units from the following:</td>
<td></td>
</tr>
<tr>
<td>CISC 323</td>
<td>Linux Operating System (1)</td>
<td>2</td>
</tr>
<tr>
<td>CISC 324</td>
<td>Intermediate Linux Operating System (1)</td>
<td></td>
</tr>
<tr>
<td>CISP 310</td>
<td>Assembly Language Programming for Microcomputers (4)</td>
<td></td>
</tr>
<tr>
<td>CISP 362</td>
<td>Programming for Mobile Devices I (4)</td>
<td></td>
</tr>
<tr>
<td>CISP 363</td>
<td>Programming for Mobile Devices II (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Java concentration Units:</td>
<td>14 - 16</td>
</tr>
<tr>
<td></td>
<td>Total Units:</td>
<td>18 - 20</td>
</tr>
</tbody>
</table>

Visual Basic concentration

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISA 322</td>
<td>Design and Development of Desktop Database Applications</td>
<td>3</td>
</tr>
<tr>
<td>CISP 300</td>
<td>Algorithm Design/Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>CISP 350</td>
<td>Database Programming</td>
<td>3</td>
</tr>
<tr>
<td>CISP 370</td>
<td>Beginning Visual Basic</td>
<td>4</td>
</tr>
<tr>
<td>CISP 371</td>
<td>Intermediate Visual Basic</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Visual Basic concentration Units:</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Total Units:</td>
<td>21</td>
</tr>
</tbody>
</table>

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- apply techniques of structured programming.
- design programs using object-oriented methodology.
- analyze problems related to computer programming.
- design algorithms to solve problems related to programming.
- develop specifications of an information system based on requirements.
- compare alternative implementations of programmed solutions using a variety of criteria.
- describe how programming fits in the context of the development of an information system.

Career Information

This programming certificate enables people who are already in the information technology or computer fields to develop or supplement their skills with the experience of an additional programming language.
CIS: Database Management Certificate

The CIS: Database Management certificate involves the study of relational database technology used in the business environment. The emphasis is on selecting the appropriate system platform for database deployment. Course work includes database system design and programming for desktop, enterprise and Internet platforms, structure query language (SQL) programming, introductory principles of modular programming, system design and problem solving, desktop operating systems, and electronic spreadsheets.

Catalog Date: January 1, 2021

Certificate Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISA 315</td>
<td>Introduction to Electronic Spreadsheets</td>
<td>2</td>
</tr>
<tr>
<td>CISA 320</td>
<td>Introduction to Database Management</td>
<td>1</td>
</tr>
<tr>
<td>CISA 322</td>
<td>Design and Development of Desktop Database Applications</td>
<td>3</td>
</tr>
<tr>
<td>CISC 320</td>
<td>Operating Systems</td>
<td>1</td>
</tr>
<tr>
<td>CISP 300</td>
<td>Algorithm Design/Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>CISP 350</td>
<td>Database Programming</td>
<td>3</td>
</tr>
<tr>
<td>CISP 370</td>
<td>Beginning Visual Basic</td>
<td>4</td>
</tr>
<tr>
<td>CISW 300</td>
<td>Web Publishing</td>
<td>3</td>
</tr>
<tr>
<td>CISW 410</td>
<td>Middleware Web Scripting</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total Units:</td>
<td>24</td>
</tr>
</tbody>
</table>

Upon completion of this program, the student will be able to:

- describe relational database technologies for desktop, enterprise and Internet platforms.
- explain and discuss database theory and principles.
- employ relational database technologies for either desktop, enterprise and Internet platforms to solve common business problems using standard database principles and practices.
- assess and document information system requirements.
- employ modular programming concepts in program development.
- design and code elementary programs encountered in business and government.
- identify interactive web publishing situations requiring database solutions.
- create interactive web database applications.

CIS: Microcomputer Applications Certificate

This certificate involves the use of the microcomputer and current, commonly used software to solve problems in a business environment. Course work includes microcomputer applications in database management, desktop publishing, electronic spreadsheets, presentation graphics, operating systems, and word processing.

Catalog Date: January 1, 2021

Certificate Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISA 305</td>
<td>Beginning Word Processing</td>
<td>2</td>
</tr>
<tr>
<td>CISA 315</td>
<td>Introduction to Electronic Spreadsheets</td>
<td>2</td>
</tr>
<tr>
<td>CISA 320</td>
<td>Introduction to Database Management</td>
<td>1</td>
</tr>
<tr>
<td>CISA 330</td>
<td>Desktop Publishing</td>
<td>2</td>
</tr>
<tr>
<td>CISA 340</td>
<td>Presentation Graphics</td>
<td>2</td>
</tr>
<tr>
<td>CISC 305</td>
<td>Introduction to the Internet</td>
<td>1</td>
</tr>
<tr>
<td>CISC 310</td>
<td>Introduction to Computer Information Science</td>
<td>3</td>
</tr>
<tr>
<td>CISC 320</td>
<td>Operating Systems</td>
<td>1</td>
</tr>
<tr>
<td>CISC 350</td>
<td>Introduction to Data Communications</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>A minimum of 6 units from the following:</td>
<td>6</td>
</tr>
<tr>
<td>CISA 306</td>
<td>Intermediate Word Processing (2)</td>
<td></td>
</tr>
<tr>
<td>CISA 316</td>
<td>Intermediate Electronic Spreadsheets (2)</td>
<td></td>
</tr>
<tr>
<td>CISA 322</td>
<td>Design and Development of Desktop Database Applications (3)</td>
<td></td>
</tr>
<tr>
<td>CISC 306</td>
<td>Introduction to Web Page Creation (1)</td>
<td></td>
</tr>
<tr>
<td>CISC 323</td>
<td>Linux Operating System (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Units:</td>
<td>21</td>
</tr>
</tbody>
</table>

Upon completion of this program, the student will be able to:

- design and manage database tables, queries and forms.
- produce reports for use in a typical business environment.
- evaluate the basic computing needs of a business by developing associated documentation and presentations.
- create spreadsheet formulas and manipulate business data.
- compose and format typical business communications documents according to industry standards.
- combine data from different software applications into one document.
- apply file management techniques in organizing computer data.
CIS: PC Support Certificate

The CIS: PC Support certificate covers the use and maintenance of a microcomputer's hardware, software and network connections in today's business environment. Course work includes basic computer skills in configuration, use, and troubleshooting major hardware components, different operating systems, and applications in a standalone and network environment. This program covers all the objectives of the Computer Technology Industry Associates (CompTIA) A+ certification exam.

Catalog Date: January 1, 2021

Certificate Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 310</td>
<td>Business Communications</td>
<td>3</td>
</tr>
<tr>
<td>CISC 310</td>
<td>Introduction to Computer Information Science</td>
<td>3</td>
</tr>
<tr>
<td>CISC 320</td>
<td>Operating Systems</td>
<td>1</td>
</tr>
<tr>
<td>CISC 350</td>
<td>Introduction to Data Communications</td>
<td>1</td>
</tr>
<tr>
<td>CISC 351</td>
<td>Introduction to Local Area Networks</td>
<td>1</td>
</tr>
<tr>
<td>CISC 361</td>
<td>Microcomputer Support Essentials - Preparation for A+ Certification</td>
<td>3</td>
</tr>
<tr>
<td>CISC 362</td>
<td>Microcomputer and Applications Support</td>
<td>2</td>
</tr>
<tr>
<td>CISC 363</td>
<td>Microcomputer Support Technical - Preparation for A+ Certification</td>
<td>3</td>
</tr>
<tr>
<td>CISC 365</td>
<td>Ethical Hacking</td>
<td>3</td>
</tr>
</tbody>
</table>

A minimum of 6 units from the following:

- CISA 126 Outlook: Basics (1)
 or BUSTEC 126 Outlook: Basics (1)
- BUSTEC 127 Outlook: Tools (1)
 or CISA 127 Outlook: Tools (1)
- CISA 305 Beginning Word Processing (2)
- CISA 315 Introduction to Electronic Spreadsheets (2)
- CISA 320 Introduction to Database Management (1)
- CISA 340 Presentation Graphics (2)
- CISC 306 Introduction to Web Page Creation (1)
- CISC 323 Linux Operating System (1)

Total Units: 26

*Taken on the Windows operating system.

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- Identify and recognize the names, purpose, and characteristics of system components by sight or definition.
- Evaluate and demonstrate basic procedures for adding and removing field replaceable components for desktop computers.
- Analyze and demonstrate understanding for installation and troubleshooting current operating systems, applications and basic networking technology used in industry.
- Formulate back-up, recovery, and system protection plans for the operating system in a network environment.
- Develop proficiency in customer service skills to effectively diagnose and communicate microcomputer software and hardware-related problems and solutions at the user level.
- Configure and implement data security methods for protecting computers and networks from unauthorized access.

Computer Information Security Essentials Certificate

This program provides basic cyber operations knowledge of internal and external threats to information assets, compliance requirements, risk management, disaster recovery, and computer forensics. It also provides preparation for the Computing Technology Industry Association (CompTIA) Security+ exam. It is a stackable certificate pathway to the CISS certificate and degree.

Catalog Date: January 1, 2021

Certificate Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISS 310</td>
<td>Network Security Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>CISS 315</td>
<td>Ethical Hacking</td>
<td>3</td>
</tr>
<tr>
<td>CISS 350</td>
<td>Disaster Recovery</td>
<td>3</td>
</tr>
<tr>
<td>CISS 360</td>
<td>Computer Forensics and Investigation</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Units: 12

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- describe the fundamental concepts of the cyber security discipline and use to provide system security.
- identify the Federal, State and Local Cyber Defense partners/structures.
- compare and contrast different types of standards including: laws, regulations, policies, voluntary, and framework-based standards.
- assess the impact of legal/regulatory standards on a given system.
- discuss the rules, laws, policies, and procedures that affect digital forensics.
- describe the steps in performing digital forensics from the initial recognition of an incident through the steps of evidence gathering, preservation and analysis, through the completion of legal proceedings.
- plan, organize, and perform penetration testing on a simple network.
- describe the role of cybersecurity in supporting and encouraging ethics, as well as where cybersecurity practices can cause ethical conflicts.
- evaluate the effectiveness of applications of cybersecurity in preventing crime and abuse.
- assess the effectiveness of a security program.
• develop contingency plans for various size organizations to include: business continuity, disaster recovery and incident response.
• evaluate responsibilities related to the handling of data as it pertains to legal, ethical and/or agency auditing issues.
• evaluate and categorize risk 1) with respect to technology; 2) with respect to individuals, and 3) in the enterprise, and recommend appropriate responses.

Career Information

Cybersecurity Engineer Cyber Operations Planner IT Security Specialist Information Security Analyst IT Privacy Analyst IT Risk Analyst Information Security Auditor

Cybersecurity and Information Assurance Certificate

This certificate prepares IT professionals to apply knowledge and experience in network security, risk management, intrusion detection, remediation, and digital forensics to safeguard infrastructure and secure data and business operations. Courses deliver proven methods for information security using software analysis techniques, web engineering, cloud management, and networking strategies to prevent, detect, and mitigate cyberattacks. This program also provides preparation for several nationally recognized, high demand certifications in the field of Cybersecurity.

Catalog Date: January 1, 2021

Certificate Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISN 140</td>
<td>CISCO Networking Academy (CCNA)tm: Networking Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>CISN 141</td>
<td>CISCO Networking Academy (CCNA)tm: Routing Protocols and Concepts</td>
<td>3</td>
</tr>
<tr>
<td>CISN 300</td>
<td>Network Systems Administration</td>
<td>3</td>
</tr>
<tr>
<td>CISS 310</td>
<td>Network Security Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>CISS 315</td>
<td>Ethical Hacking</td>
<td>3</td>
</tr>
<tr>
<td>CISS 316</td>
<td>Cisco Networking Academy™: CCNA Cybersecurity Operations</td>
<td>3</td>
</tr>
<tr>
<td>CISS 321</td>
<td>Scripting for Cyber Security</td>
<td>3</td>
</tr>
<tr>
<td>CISS 330</td>
<td>Implementing Internet Security and Firewalls</td>
<td>3</td>
</tr>
<tr>
<td>CISS 350</td>
<td>Disaster Recovery</td>
<td>3</td>
</tr>
<tr>
<td>CISS 360</td>
<td>Computer Forensics and Investigation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Units:</td>
<td>30</td>
</tr>
</tbody>
</table>

Student Learning Outcomes

Upon completion of this program, the student will be able to:

• define best practices for configuring cyber defense and countermeasures.
• design organizational plans for securing data and while maintaining the confidentiality, integrity, and availability (CIA) of the information transmitted over communication networks.
• explain how security principles and cyber defense concepts impact organizational policies and practices.
• analyze security risks mitigation processes to identify, evaluate, prioritize, and prevent potential security threats.
• critique plans to secure and manage physical and virtual infrastructures for legal and secure cloud operations.
• outline legal issues that should be included within the security awareness training and education program of an organization.
• analyze applicable laws and policies to legally protect the organization against security incident.
• determine how to address vulnerabilities and threats in cellular and mobile network technologies.
• prioritize and establish a disaster recovery plan for the enterprise.
• develop security incident response plans that align to an organization’s security goals and objectives and maintain business continuity.

Career Information

Internet Marketing Certificate

This certificate offers a program of study for students seeking jobs that require skills in technical marketing applications. It provides opportunities to combine traditional marketing theory with the technical skills needed in today's business environment. Courses address current technology-based business communications, marketing, Internet strategies, applications, and trends.

Catalog Date: January 1, 2021

Certificate Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUS 310</td>
<td>Business Communications</td>
<td>3</td>
</tr>
<tr>
<td>CISA 330</td>
<td>Desktop Publishing</td>
<td>2</td>
</tr>
<tr>
<td>CISA 340</td>
<td>Presentation Graphics</td>
<td>2</td>
</tr>
<tr>
<td>CISA 345</td>
<td>Technical Marketing Applications</td>
<td>2</td>
</tr>
<tr>
<td>CISA 346</td>
<td>Social Media Applications</td>
<td>1</td>
</tr>
<tr>
<td>CISW 350</td>
<td>Imaging for the Web</td>
<td>1</td>
</tr>
<tr>
<td>MKT 330</td>
<td>Internet Marketing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Total Units:</td>
<td>14</td>
</tr>
</tbody>
</table>

Student Learning Outcomes

Upon completion of this program, the student will be able to:

• identify and create effective Internet marketing strategies that enhance business relationships with present and future customers.
• apply communication theory, effective writing techniques, and presentation skills to business situations.
utilize software applications designed to present and promote business in print and visual media.

- devise a marketing plan using social media applications and content platforms for marketing both small and large businesses.
- analyze various software applications for Search Engine Optimization (SEO), analytic tools, web-building and blog applications, email marketing, and other technical marketing tools.

Career Information

Career opportunities include titles such as social media administrator, digital marketing director, campaign specialist, marketing/events coordinator, media marketing, social media squad, Internet marketing communications, and communications and social media coordinator.

Network Administration Essentials - Windows Certificate

This program provides the information and skills necessary for network administration professionals to administer a Windows Active Directory domain-based enterprise network. It also provides preparation for several Microsoft Certified Systems Engineer (MCSE) certification exams.

Catalog Date: January 1, 2021

Certificate Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISN 300</td>
<td>Network Systems Administration</td>
<td>3</td>
</tr>
<tr>
<td>CISN 302</td>
<td>Intermediate Network Systems Administration</td>
<td>3</td>
</tr>
<tr>
<td>CISN 307</td>
<td>Windows Active Directory Services</td>
<td>3</td>
</tr>
<tr>
<td>CISN 308</td>
<td>Internetworking with TCP/IP</td>
<td>3</td>
</tr>
<tr>
<td>Total Units:</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- Define best practices for configuring network operating system services.
- Construct and apply group policy settings at the Organizational Unit (OU), domain, site or local machine level.
- Apply Windows group policy and NTFS file system permissions to secure the workstations, the internal network and shared resources.

Technical Communications Certificate

This certificate offers an interdisciplinary program of courses in Technical Communications, Art/New Media, and Computer Information Systems to prepare students for a variety of technical writing and professional communication careers. The certificate includes the theory, writing skills, design background, and computer applications knowledge needed for jobs in technical communication.

Catalog Date: January 1, 2021

Certificate Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTNM 352</td>
<td>Design for Publication (3)</td>
<td>2-3</td>
</tr>
<tr>
<td>or CISA 330</td>
<td>Desktop Publishing (2)</td>
<td></td>
</tr>
<tr>
<td>CISA 305</td>
<td>Beginning Word Processing (2)</td>
<td>2-3</td>
</tr>
<tr>
<td>or BUSTEC 310</td>
<td>Introduction to Word/Information Processing (3)</td>
<td></td>
</tr>
<tr>
<td>CISW 300</td>
<td>Web Publishing</td>
<td>3</td>
</tr>
<tr>
<td>TECCOM 300</td>
<td>Introduction to Technical/Professional Communication</td>
<td>3</td>
</tr>
<tr>
<td>TECCOM 310</td>
<td>Writing Digital Content</td>
<td>1</td>
</tr>
<tr>
<td>TECCOM 330</td>
<td>Writing Technical Manuals</td>
<td>1</td>
</tr>
<tr>
<td>A minimum of 3 units from the following:</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BUS 100</td>
<td>English for the Professional (3)</td>
<td></td>
</tr>
<tr>
<td>BUS 310</td>
<td>Business Communications (3)</td>
<td></td>
</tr>
<tr>
<td>CISW 321</td>
<td>Web Site Development using Dreamweaver (3)</td>
<td></td>
</tr>
<tr>
<td>Total Units:</td>
<td></td>
<td>15-17</td>
</tr>
</tbody>
</table>

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- analyze audience information needs.
- compose concise, clearly written professional documents organized with the audiences' needs in mind.
- design print and online resources that communicate organizations' values, enhance readability, and are easy to use.
- demonstrate basic skills in the use of word processing, page design, and web design applications.
- evaluate organizations' communication goals and needs based on technical writing principles.

Career Information

Technical communicators find employment in medical, scientific, high tech, business, university, and government settings. They may write white papers, tutorials, reference and procedure manuals, help systems, user assistance video scripts, grants and proposals, and more.

Web Developer Certificate
This certificate offers a program of study for students seeking jobs in the fields of web-based programming and web application development. It provides opportunities to develop the necessary skills and aptitudes for creating and maintaining interactive, database-driven web applications.

Certificate Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISC 320</td>
<td>Operating Systems</td>
<td>1</td>
</tr>
<tr>
<td>CISC 323</td>
<td>Linux Operating System</td>
<td>1</td>
</tr>
<tr>
<td>CISC 324</td>
<td>Intermediate Linux Operating System</td>
<td>1</td>
</tr>
<tr>
<td>CISP 300</td>
<td>Algorithm Design/Problem Solving (3)</td>
<td>3 - 5</td>
</tr>
<tr>
<td>or CISP 360</td>
<td>Introduction to Structured Programming (4)</td>
<td></td>
</tr>
<tr>
<td>or CISP 370</td>
<td>Beginning Visual Basic (4)</td>
<td></td>
</tr>
<tr>
<td>or CISP 401</td>
<td>Object Oriented Programming with Java (4)</td>
<td></td>
</tr>
<tr>
<td>or CISP 480</td>
<td>Honors Introduction to Structured Programming (5)</td>
<td></td>
</tr>
<tr>
<td>CISP 350</td>
<td>Database Programming</td>
<td>3</td>
</tr>
<tr>
<td>CISW 300</td>
<td>Web Publishing</td>
<td>3</td>
</tr>
<tr>
<td>CISW 310</td>
<td>Advanced Web Publishing (4)</td>
<td>3 - 4</td>
</tr>
<tr>
<td>or CISW 360</td>
<td>Beginning Flash (3)</td>
<td></td>
</tr>
<tr>
<td>or CISW 400</td>
<td>Client-side Web Scripting (4)</td>
<td></td>
</tr>
<tr>
<td>CISW 370</td>
<td>Designing Accessible Websites</td>
<td>1</td>
</tr>
<tr>
<td>CISW 410</td>
<td>Middleware Web Scripting</td>
<td>4</td>
</tr>
</tbody>
</table>

A minimum of 4 units from the following:

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISW 304</td>
<td>Cascading Style Sheets</td>
<td></td>
</tr>
<tr>
<td>CISW 350</td>
<td>Imaging for the Web (1)</td>
<td></td>
</tr>
<tr>
<td>CISW 355</td>
<td>Web Imaging Projects (2)</td>
<td></td>
</tr>
<tr>
<td>CISW 410</td>
<td>Middleware Web Scripting</td>
<td></td>
</tr>
</tbody>
</table>

Total Units: 24 - 27

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- Analyze how an interactive web application is developed using static web pages, forms, client-side scripts, server-side scripts, subroutine or class libraries, and relational databases.
- Evaluate informational or business needs that could benefit from a web application and design an appropriate web application that addresses those needs.
- Create and debug scripts in at least one client-side and at least one server-side scripting language.
- Construct embedded Structured Query Language (SQL) commands to access, display, modify, add, and delete information via a web application.
- Integrate graphic principles and programming functionality with a web application.
- Demonstrate basic use of both Linux and Windows Operating System command-line interface.
- Devise or choose efficient algorithms for the solution of problems using the control structures of structured programming.
- Design software using object-oriented methods to develop event-driven programs for both applets and applications.

This certificate offers a program of study for students seeking jobs in the fields of web publishing, design, and development. It provides opportunities to develop the necessary skills for creating and maintaining large web sites for industry, government, and nonprofit agencies. General development of web publishing skills, including a thorough grounding in the HyperText Markup Language (HTML), Internet protocols, and web standards, is emphasized.

Certificate Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISC 310</td>
<td>Introduction to Computer Information Science</td>
<td></td>
</tr>
<tr>
<td>CISC 320</td>
<td>Operating Systems</td>
<td>1</td>
</tr>
<tr>
<td>CISC 323</td>
<td>Linux Operating System</td>
<td>1</td>
</tr>
<tr>
<td>CISW 300</td>
<td>Web Publishing</td>
<td>3</td>
</tr>
<tr>
<td>CISW 304</td>
<td>Cascading Style Sheets</td>
<td>2</td>
</tr>
<tr>
<td>CISW 350</td>
<td>Imaging for the Web (1)</td>
<td>1</td>
</tr>
<tr>
<td>CISW 370</td>
<td>Designing Accessible Websites</td>
<td>1</td>
</tr>
</tbody>
</table>

A minimum of 4 units from the following:

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISW 310</td>
<td>Advanced Web Publishing (4)</td>
<td></td>
</tr>
<tr>
<td>CISW 400</td>
<td>Client-side Web Scripting (4)</td>
<td></td>
</tr>
<tr>
<td>CISW 410</td>
<td>Middleware Web Scripting</td>
<td></td>
</tr>
</tbody>
</table>

A minimum of 3 units from the following:

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTN 402</td>
<td>Intermediate Web Design (3)</td>
<td></td>
</tr>
<tr>
<td>CISW 321</td>
<td>Web Site Development using Dreamweaver (3)</td>
<td></td>
</tr>
<tr>
<td>CISW 355</td>
<td>Web Imaging Projects (2)</td>
<td></td>
</tr>
<tr>
<td>CISW 360</td>
<td>Beginning Flash (3)</td>
<td></td>
</tr>
</tbody>
</table>

Total Units: 19

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- Research the differences in goals, techniques, and costs between traditional print publishing and web publishing.
Computer Information Science - Applications (CISA) Courses

CISA 126 Outlook: Basics
This course introduces Microsoft Outlook, the industry-leading personal information management software. Topics include understanding and navigating the Outlook environment, creating and sending email, using email special features, managing Outlook contacts, using an electronic calendar, and creating tasks and to-do items. BUSTEC 126/CISA 126 and BUSTEC 127/CISA 127 taken together are considered sufficient preparation to pass the Microsoft Office Specialist certification for the Microsoft Outlook application and the communications portion of the International Computer Driver's License (ICDL) Module 7: Information and Communication. This course is not open to students who have completed BUSTEC 126.

Upon completion of this course, the student will be able to:

- send and receive email utilizing the special features of Outlook.
- create and modify contacts in an address book.
- create and organize Outlook calendar items.
- create and modify contacts in an address book.
- create and organize Outlook calendar items.
- incorporate tasks and to-do items into the personal information management software.
- distinguish between Outlook in an Exchange environment and a stand-alone environment.
- identify the potential risks associated with the use of email.

Certificate

CIS: Mobile Programming Certificate
This certificate offers a program of study for students seeking jobs in the fields of mobile application development. It provides opportunities to develop the necessary skills and aptitudes for designing, developing, and testing a variety of application programs for mobile devices.

Catalog Date: January 1, 2021

Certificate Requirements

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISP 300</td>
<td>Algorithm Design/Problem Solving (3)</td>
<td>3 - 4</td>
</tr>
<tr>
<td>or CISP 370</td>
<td>Beginning Visual Basic (4)</td>
<td></td>
</tr>
<tr>
<td>CISP 362</td>
<td>Programming for Mobile Devices I</td>
<td>4</td>
</tr>
<tr>
<td>CISP 360</td>
<td>Introduction to Structured Programming</td>
<td>4</td>
</tr>
<tr>
<td>CISP 363</td>
<td>Programming for Mobile Devices II</td>
<td>4</td>
</tr>
<tr>
<td>Total Units:</td>
<td>15 - 16</td>
<td></td>
</tr>
</tbody>
</table>

Student Learning Outcomes

Upon completion of this program, the student will be able to:

- develop a mobile application program using tools included in a software development kit.
- design software using object-oriented methods to develop event-driven programs for mobile application programs.
- publish mobile applications in an application marketplace.

Career Information

Mobile devices such as tablets and smart phones continue to be more cost effective and versatile. Due to the portability, cost, built-in devices and user-friendliness, mobile devices gain much popularity in end-user and commercial markets. As a result, there is a great demand for developers and software engineers who can write application programs for mobile devices. A developer with this certificate can work as an independent mobile application developer or join a team of developers in software firms that specialize in mobile application development.

Computer Information Science - Applications (CISA) Courses

CISA 126 Outlook: Basics

This course introduces Microsoft Outlook, the industry-leading personal information management software. Topics include understanding and navigating the Outlook environment, creating and sending email, using email special features, managing Outlook contacts, using an electronic calendar, and creating tasks and to-do items. BUSTEC 126/CISA 126 and BUSTEC 127/CISA 127 taken together are considered sufficient preparation to pass the Microsoft Office Specialist certification for the Microsoft Outlook application and the communications portion of the International Computer Driver's License (ICDL) Module 7: Information and Communication. This course is not open to students who have completed BUSTEC 126.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- send and receive email utilizing the special features of Outlook.
- create and modify contacts in an address book.
- create and organize Outlook calendar items.
- create and modify contacts in an address book.
- create and organize Outlook calendar items.
- incorporate tasks and to-do items into the personal information management software.
- distinguish between Outlook in an Exchange environment and a stand-alone environment.
- identify the potential risks associated with the use of email.

CISA 127 Outlook: Tools

This course introduces Microsoft Outlook, the industry-leading personal information management software. Topics include understanding and navigating the Outlook environment, creating and sending email, using email special features, managing Outlook contacts, using an electronic calendar, and creating tasks and to-do items. BUSTEC 126/CISA 126 and BUSTEC 127/CISA 127 taken together are considered sufficient preparation to pass the Microsoft Office Specialist certification for the Microsoft Outlook application and the communications portion of the International Computer Driver's License (ICDL) Module 7: Information and Communication. This course is not open to students who have completed BUSTEC 126.
This course presents the advanced personal information management tools in Outlook. Topics include working with multiple email accounts, using rules and folders, incorporating advanced calendar and contact features, collaborating using sharing and delegate features, and customizing the Outlook user interface. In addition, the course covers the integration of Outlook with other applications in the Microsoft Office suite. Additionally, BUSTEC 126/CISA 126 and BUSTEC 127/CISA 127 taken together are considered sufficient preparation to pass the Microsoft Office Specialist certification for the Microsoft Outlook application and the communications portion of the International Computer Driver's License (ICDL) Module 7: Information and Communication. This course is not open to students who have completed BUSTEC 127.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- incorporate multiple email accounts into Outlook.
- integrate rules and folders into communication management.
- apply Outlook features to find, manage, and archive information.
- collaborate with other Outlook users by using sharing and delegates.
- customize contacts and calendars using advanced Outlook features.
- revise the Outlook user environment.

CISA 160 Project Management Techniques and Software

Same As: MGMT 142
Units: 3
Hours: 54 hours LEC
Prerequisite: None.
Advisory: ENGWR 102 or 103; and ENGRD 116; OR ESLR 320 and ESLW 320; CISC 300
Catalog Date: January 1, 2021

This introductory course covers the responsibilities of a project manager. It includes the knowledge needed to manage a project, control costs, and schedule resources. It also introduces the use of project management software to track project resources, tasks, and milestones. This course is not open to students who have taken MGMT 142.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- construct a basic plan of action utilizing project management software.
- compare and contrast various theories of leadership and motivation.
- explain the principles of project management with regard to case studies.
- demonstrate the ability to formulate a project plan, given specific scenarios.
- assess the inherent advantages and shortcomings in various software packages.

CISA 171 Introduction to Adobe Acrobat

Units: 1
Hours: 9 hours LEC; 27 hours LAB
Prerequisite: None.
Catalog Date: January 1, 2021

This course introduces Adobe Acrobat tools for creating, editing, reading, and printing Portable Document Format (PDF) documents. Topics include software navigation, converting other file types to PDF, and customizing output quality. Additional topics include modifying PDF files, placing documents on-line, adding digital signatures and security, creating presentations, creating dynamic forms, manipulating graphics, and using Acrobat in a review cycle.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- create and enhance Adobe Portable Document File(s)(PDF).
- convert images, emails and non-PDF file types to a PDF file and evaluate the optimum balance between file size and quality for specific needs.
- formulate a document review cycle, using different levels of document security to limit users' ability to manipulate the contents.
- produce dynamic forms that capture and share information electronically.
- analyze documents for user accessibility and flexibility.
- effectively use Adobe Acrobat Help.
- scan a paper document to a PDF file.

CISA 299 Experimental Offering in Computer Information Science - Applications

Units: 0.5 - 4
Prerequisite: None.
Catalog Date: January 1, 2021

CISA 305 Beginning Word Processing

Units: 2
Hours: 27 hours LEC; 27 hours LAB
Prerequisite: None.
Advisory: CISC 300
Transferable: CSU
General Education: AA/AS Area I(b)
Catalog Date: January 1, 2021

This course introduces students to fundamental word processing skills and techniques that are essential to global information sharing. It engage students in real-world case studies while demonstrating the entire document production
process including creating, editing, and formatting documents. This course culminates with the study of intermediate-level features such as creating tables, working with themes and graphics, and merging multiple documents.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- develop and analyze document requirements.
- create various documents that require the integration of text, charts, and/or graphics for distribution or presentation.
- design strategies for merging and integrating source data from different applications.
- work with multiple documents, templates, as well as techniques for using and editing pre-designed styles from the style gallery.
- analyze appropriate layout and design of documents for specific audiences.
- solve errors in document formatting, layout, unreadable characters, and common error messages.

CISA 306 Intermediate Word Processing

Units: 2
Hours: 27 hours LEC; 27 hours LAB
Prerequisite: CISA 305 with a grade of "C" or better
Transferable: CSU
Catalog Date: January 1, 2021

This course builds upon previous instruction in the use of a word processing application with an emphasis on advanced information documents and reports. It includes formatting multiple page documents, integrating Word with other programs, advanced graphics, working with templates, building forms, and complex commands. It also covers working with references, building table of contents and figures, and customizing Word.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- analyze document requirements to determine the most efficient page layout and format for multi-column documents that also include graphics.
- develop multipage documents that include section headers and footers, a table of contents, a table of figures, an index, and a citation style.
- manage document styles by exploring existing styles, modify built-in styles, create paragraph styles, create character, list, and table styles.
- plan and create online forms and tables for efficient data display and input data into customized forms.
- create references by customizing footnotes, modifying citations and captions, and generating a bibliography.
- develop text for a report that include embedded objects and information and data from another Word file.
- import spreadsheet and database files into word processing applications.
- link and manage linked spreadsheet and database files.
- enhance newsletters and single- or multi-column documents with a variety of graphics, imported clip art and scanned images.
- explore collaboration options such as commenting with a document, tracking changes, managing reviews, and comparing documents.

CISA 308 Exploring Word Processing and Presentation Software

Units: 1
Hours: 18 hours LEC
Prerequisite: None.
Transferable: CSU
Catalog Date: January 1, 2021

This course introduces word processing and presentation software. The basic features and skills of creating, editing, and formatting documents; inserting tables and graphics, and enhancing word processed documents and presentations are covered.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- evaluate efficient techniques in creating and formatting typical business documents.
- analyze document requirements and use correct features when creating business documents that require the integration of text, charts, and/or graphics for distribution or presentation.
- compare various data manipulation features such as cut/copy/paste, sort, and merge.
- choose from among various formatting options such as: margins, headers/footers, and page orientation.
- create and format tables for efficient data display utilizing options in table properties.
- evaluate and analyze appropriate layout and design for specific audiences.
- design a basic presentation.

CISA 315 Introduction to Electronic Spreadsheets

Units: 2
Hours: 27 hours LEC; 27 hours LAB
Prerequisite: None.
Advisory: CISC 100 or 300
Transferable: CSU
General Education: AA/AS Area I(b)
Catalog Date: January 1, 2021

This course introduces the basic concepts and applications of an electronic spreadsheet program, including organizing, creating, and modifying a spreadsheet. It presents the basics of entering data in a worksheet using columns and rows, labels, and values; completing worksheet calculations using formulas and functions; and producing professional looking charts. In addition, the course introduces formatting, sorting, querying, and multi-sheet management. It also introduces 3-D cell referencing, financial functions, "Goal Seek," "LOOKUP," "What If," and decision-making.

Student Learning Outcomes

Upon completion of this course, the student will be able to:
navigate to and from storage locations, open and close a spreadsheet application, and recognize window components

explain spreadsheet software, identify window components, and write labels, values, and simple formulas

revise cell and worksheet entries, choose worksheet views, and use the auto-summation feature

create complex formulas and functions, and round a value with a function

define relative cell reference and absolute cell reference, copy formulas and functions with relative and absolute cell references, and revise relative and absolute cell references formulas and functions

format all or portions of a worksheet using standard layouts, formats, styles, alignments, and themes

apply colors, patterns, borders, special number formats, and conditional formatting; as well as renaming and moving worksheets

apply spreadsheet features such as employing text functions to format data, consolidating data using a formula, using a formula to consolidate data, and identifying and revising errors within formulas

apply application features such as developing a logical formula with the IF function and the AND function, as well as calculating payments with the PMT function

plan, design, create, and revise embedded as well as stand-alone charts based on commonly used standards

perform basic chart tasks such as selecting labels and values, choosing a chart type, and moving and resizing a chart

perform basic chart tasks such as changing a chart's design, annotating and drawing on a chart, and inserting images and objects within a chart

CISA 316 Intermediate Electronic Spreadsheets

Units: 2
Hours: 27 hours LEC; 27 hours LAB
Prerequisite: CISA 315 with a grade of "C" or better
Transferable: CSU
Catalog Date: January 1, 2021

This course is a continuation of CISA 315 (Introduction to Electronic Spreadsheets) with emphasis on workbook design and integration, template design, use of complex formulas, and built-in financial, logical, and database functions. It also includes look-up tables, the use of worksheet analysis tools, macros, and data integration.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- compile, arrange, and protect worksheets and workbooks, add a worksheet background, group worksheets, and insert hyperlinks.
- confirm custom views of a worksheet and prepare and save a workbook for distribution.
- plan, create, and format a table, add and sort table data, and use a formula in a table.
- locate, revise, and delete table data and distribute a table.
- synthesize a table, create a custom table filter, and filter a table with the advanced filter.
- discover and validate values in a table, extract table data, summarize table data, and create subtotals.
- plan, edit, enable, record, and run a macro.
- use the personal macro workbook, assign a macro to a button, and assign keyboard shortcuts to macros.
- modify a chart, add chart elements and a style, format chart axes, and create a combination chart.
- reorganize a data series, revise a data source, identify data trends, and summarize data with sparklines.
- define what-if analysis, use solver for complex what-if analysis, and use scenario manager to track what-if analysis and generate a summary.
- extend figures using a data table, use goal seek, and use the analysis toolpak to analyze data.

CISA 318 Exploring Spreadsheet Software

Units: 1
Hours: 18 hours LEC
Prerequisite: None.
Transferable: CSU
Catalog Date: January 1, 2021

This course introduces spreadsheet software. Topics include navigating a spreadsheet, editing and formatting data, using formulas and functions, inserting and formatting charts and graphics, basic database features, and analyzing data.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- plan, build, test, and document worksheets
- create formulas and manipulate data using mathematical operators in addition to financial, statistical, and logical functions
- design spreadsheet formatting using colors, patterns, and borders
- design worksheet entries with relative, mixed, and absolute cell references
- plan and construct various types of charts based on the most effective and appropriate display of data
- analyze worksheet data using "what-if" scenarios and "Goal Seek"
- evaluate basic database sorting and filtering techniques
- assess data from the Internet using a browser, search, and hyperlink capabilities
- create web queries to get real-time spreadsheet data from web sites
- design headers, footers, annotations, and other documentation
- analyze data using subtotals, pivot tables, and pivot charts
- create standardized workbooks using templates, styles, and macros

CISA 320 Introduction to Database Management

Units: 1
Hours: 9 hours LEC; 27 hours LAB
Prerequisite: BUSTEC 300.1 and CISC 300
Advisory: AA/AS Area II(b)
Transferable: CSU
Catalog Date: January 1, 2021

This course introduces database management. Topics include database fundamentals, data models, database design, database management systems, and database administration.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- plan, design, and implement a database system
- create and manipulate tables, views, and indexes
- analyze and design database structures
- implement and manage database transactions
- use SQL to query and manipulate data
- use database management tools
- assess and improve database performance
- design and implement database security and integrity controls
- use database administration tools
- create and manage backup and recovery plans
- design and manage database maintenance plans
- use database migration tools
- design and implement database performance monitoring and tuning techniques
- design and implement database disaster recovery plans
- design and implement database performance monitoring and tuning techniques
- design and implement database disaster recovery plans
- design and implement database performance monitoring and tuning techniques
This course introduces the use of database management programs on the microcomputer. It includes designing a database; storing, searching, and updating files; and designing and producing printed reports.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- describe basic database functions, such as developing a query, and sorting, searching, filtering, and calculating data
- create database structures, and import and export data
- design and create database tables, queries, joins, forms, and reports
- use database functions, such as filling, retrieving, updating, and calculating

CISA 322 Design and Development of Desktop Database Applications

Units: 3
Hours: 36 hours LEC; 54 hours LAB
Prerequisite: CISA 320 with a grade of "C" or better
Transferable: CSU
Catalog Date: January 1, 2021

This course covers strategies for the design and development of desktop database applications. Topics include database objects, data types, data integrity, relational tables, joins, relationships, domain constraints, complex queries, forms, reports, sharing data with other applications, and data maintenance.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- analyze needs and determine appropriate data structures and solutions.
- create tables, queries, forms, and reports.
- formulate multiple table queries with complex criteria.
- design forms for data entry and data views.
- interpret data with crosstab queries, pivot tables, and reports.
- build tables by importing delimited data and exporting data to spreadsheet applications.
- design and implement multiple table data management systems involving custom forms, reports, and labels.
- manage, backup, and repair database objects.

CISA 330 Desktop Publishing

Units: 2
Hours: 27 hours LEC; 27 hours LAB
Prerequisite: None.
Advisory: BUSTEC 100.1 and CISC 300
Transferable: CSU
Catalog Date: January 1, 2021

This course provides an overview of desktop publishing (DTP) and a major desktop publishing application program. It includes page layout skills needed to produce newsletters, brochures, flyers, reports, and other marketing material. Additionally, it covers importing and placing graphics and text, using layers, master pages, frames, creating graphics using the pen tool, and working with color both digitally and in print.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- develop settings and preferences to create single and multi-page documents.
- apply the vocabulary and tools associated with navigating the desktop publishing work area.
- define the proper use of text tools, such as leading, tracking, and kerning.
- create and apply styles to format text.
- assemble, import, and arrange text and graphics working with frames and layers.
- create, set up, apply, and modify master pages.
- prioritize layers, and stack, align, and distribute frames/objects on a page.
- apply colors to objects and text.
- create graphics using the Pen tool.
- originate commonly used printed marketing documents using desktop publishing software.
- analyze the potential for desktop publishing use in business and organizational communications.

CISA 331 Intermediate Desktop Publishing

Units: 2
Hours: 27 hours LEC; 27 hours LAB
Prerequisite: CISA 330 with a grade of "C" or better
Advisory: BUS 100
Transferable: CSU
Catalog Date: January 1, 2021

This course builds upon previous desktop publishing software concepts and study. Topics include working with effects and advanced techniques, applying styles, importing and linking graphics, tabs and tables, and working with transparency effects. It also covers producing long documents and book features, output and exporting to PDF format, and creating interactive documents for online use.

Student Learning Outcomes

Upon completion of this course, the student will be able to:
CISA 340 Presentation Graphics

Upon completion of this course, the student will be able to:

- demonstrate effective design principles and concepts when preparing presentations.
- apply audience analysis techniques to establish criteria for the presentation approach.
- evaluate visual presentations by utilizing standard guidelines, tools, and techniques used in today's business world.
- integrate graphics, word processing and spreadsheet information, and sound in the development of a presentation.
- create visual appeal through custom animation, transitions, and motion paths.
- create hyperlinks, and also embed and link objects and files.
- create and edit tables, charts, diagrams, templates, and custom photo album presentations.
- plan and publish presentations for the Web.

CISA 345 Technical Marketing Applications

Upon completion of this course, the student will be able to:

- develop a website using online template tools
- create a blog and connect it with a website
- evaluate and prepare Search Engine Optimization (SEO) and Inbound Marketing tactics
- create SEO content types (content marketing) to include text, images, video, graphics, and presentations
- assess and set up webmaster tool applications and measurement techniques used to evaluate digital marketing (analytics)
- examine paid search marketing pay-per-click (PPC)
- utilize an online application to set up an email marketing campaign
- research other internet marketing platforms such as podcasts, ebooks, webinars, and more.

CISA 346 Social Media Applications

Upon completion of this course, the student will be able to:

- analyze various forms of social media technology used in marketing
- create a business platform using online social networking services
- set up and use a microblogging application
- create and add content to a visual bookmark board application
- create and use Internet based photo and video sharing applications
- edit, compress, and create graphics using online photo editing and graphic marketing design applications
- originate, edit, and post video for marketing purposes using online video editing and hosting sites
- combine and set up links for all media to connect and promote for business
- critique social media for marketing using analytic tools and applications

CISA 348 Exploring Presentation Graphics

Units: 1
Hours: 18 hours LEC
Prerequisite: None.
Transferable: CSU
Catalog Date: January 1, 2021

This course provides students with sufficient knowledge and skills to prepare presentations in a variety of courses. Topics include planning, designing, and preparing presentations; enhancing presentations with media; creating posters, tables, and statistical charts; interactivity, advanced animation, and hyperlinks; customizing a slide show; and collaborating, securing, and sharing a presentation.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- plan, design, and prepare a presentation.
- incorporate media into a digital presentation.
- create posters, tables, and statistical charts with presentation graphics software.
- incorporate interactivity, advanced animation, and hyperlinks into a digital presentation.
- adapt a digital slide show.
- develop a digital presentation collaboratively.
- construct, secure, and share a digital presentation.

CISA 499 Experimental Offering in Computer Information Science - Applications

Computer Information Science - Core (CISC) Courses

CISC 100 Computer Fundamentals with Hands-on Lab

Units: 2
Hours: 27 hours LEC; 27 hours LAB
Prerequisite: None.
Catalog Date: January 1, 2021

This introductory course develops basic computer skills needed for college-level courses, workplace productivity, and personal enrichment. It provides individuals who are new to computing or who have very little computing experience with slower paced, general, non-technical information as well as in-class hands-on instruction reinforcement. This course introduces common computer terminology and concepts, file management, electronic mail, online course management, productivity application software, and the Internet.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- identify and name the most common digital computing devices
- identify and name basic operating system commands, tasks, and primary user interface components
- identify and name the basic components of a desktop computer system including most common interactive devices
- identify and name differences and similarities between system software and application software
- manage files and documents using file management system procedures
- use contemporary business productivity software
- use Internet and educational technologies
- use an electronic mail system
- define common computer terms

CISC 294 Topics in Computer Information Science - Core

Units: 0.5 - 5
Hours: 9 - 72 hours LEC
Prerequisite: None.
Catalog Date: January 1, 2021

Current topics in computer science and information systems not covered by regular catalog offerings are examined. Topics and locations vary, including advanced subjects related to computer science, networking, programming, database, applications, PC support, security, communications, and web development and publishing. Field trips may be required.
Upon completion of this course, the student will be able to:

- evaluate current issues and emerging technologies in computer science and information technology.
- apply hands-on experience using current techniques of computer science and information technology.
- examine computer science and information technology issues that affect daily lives.

CISC 295 Independent Studies in Computer Information Science - Core

<table>
<thead>
<tr>
<th>Units:</th>
<th>1 - 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours:</td>
<td>54 - 162 hours LAB</td>
</tr>
<tr>
<td>Prerequisite:</td>
<td>None.</td>
</tr>
<tr>
<td>Catalog Date:</td>
<td>January 1, 2021</td>
</tr>
</tbody>
</table>

Independent Study is an opportunity for the student to extend classroom experience in this subject, while working independently of a formal classroom situation. Independent study is an extension of work offered in a specific class in the college catalog. To be eligible for independent study, students must have completed the basic regular catalog course at American River College. They must also discuss the study with a professor in this subject and secure approval. Only one independent study for each catalog course will be allowed.

CISC 299 Experimental Offering in Computer Information Science - Core

<table>
<thead>
<tr>
<th>Units:</th>
<th>0.5 - 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite:</td>
<td>None.</td>
</tr>
<tr>
<td>Catalog Date:</td>
<td>January 1, 2021</td>
</tr>
</tbody>
</table>

CISC 300 Computer Familiarization

This introductory course develops and improves the basic computer skills necessary for college-level courses, workplace productivity, and personal enrichment. It introduces common computer terminology and concepts, file management, electronic mail, online learning, productivity application software, and the Internet.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- identify and name the most common digital computing devices.
- identify and name basic operating system commands, tasks, and primary user interface components.
- employ the mouse as a navigational tool to select ribbon tabs, icons, text, and screen options.
- manage stored files using file management procedures.
- create, save, and print word processing documents using basic editing and formatting techniques.
- employ Internet and educational technologies.
- employ an electronic mail system.
- define common computer terms.

CISC 305 Introduction to the Internet

This course introduces how the Internet works and how to effectively use basic Internet services. Topics include browser basics, search engines and search techniques, e-mail, the World Wide Web, Internet security, Internet resources, the Cloud, social networking, and building basic web pages using Hypertext Markup Language (HTML).

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- describe the structure of the Internet, the World Wide Web, the Internet browser, and a web page.
- evaluate and critique various types of information sources on the Internet.
- apply and effectively use the World Wide Web and a web browser to search for and locate specific information on the Internet.
- research how technology can help with life skills, including local and world news, finding health services, educational resources, travel, and banking online.
- create professional email accounts, including using address and mailing lists, attaching files, learning proper etiquette, and identifying security risks.
- analyze Internet security risks and explain how to protect a PC from viruses, trojans, spam, spyware, rootkits, and keyloggers.
- define different types of cloud computing and explain the benefits and security risks.
- utilize social networking sites such as Facebook, Twitter, LinkedIn, photoshare, and other popular sites. Explain the marketing value and the risks with each.
- construct a basic web page using plain HTML code.
CISC 306 Introduction to Web Page Creation

This course covers the production of web pages, including design, layout, construction, and presentation. A web authoring tool is used to format a web page and Extensible Hypertext Markup Language (XHTML) is introduced.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- evaluate content needs for a web page.
- design a web page.
- create and format web pages using a web authoring tool.
- publish web pages to a web server.
- apply industry standard web design techniques.

CISC 308 Exploring Computer Environments and the Internet

This course introduces the fundamentals of microcomputer hardware, software, and computer networking, focusing on operating systems. The fundamentals of the Internet and Internet tools are also introduced.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- classify various types of computers and how they work
- distinguish the basic components of a computer
- evaluate effective procedures for creating and managing folders
- design custom computer settings utilizing the control panel and other accessories
- create effective operating system searches to locate files, folders, and data stored within folders using various filenames and wildcards
- choose the correct commands to capture and print screens
- evaluate operating system commands required to store, manage, back-up, access, and maintain files stored on various drives and other storage devices
- create, modify, and delete files using Windows Explorer
- compare and contrast basic operating system and Internet terminology and concepts
- design efficient Internet search techniques using search engines and subject directories

CISC 310 Introduction to Computer Information Science

This course examines information technology and its role in solving business problems. Topics include information systems, database management systems, networking, e-commerce, ethics and security, and computer systems software and hardware components. These concepts and related methods are applied through hands-on projects to develop computer-based solutions to business problems.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- explain how a computer system works.
- differentiate between the hardware and software components of a computer network.
- differentiate between the hardware components of a computer system.
- differentiate between system software and application software.
- differentiate between the most commonly used computer operating systems.
- explain the basic operation of networks.
- differentiate the types of computer networks.
- demonstrate the secure utilization of Internet resources.
- propose methods for insuring the security of business information systems.
- discuss and relate the different phases of the System Development Cycle.
- demonstrate an understanding of the development and use of information systems in business.
- recommend methods of assessing business information systems.
- solve common business problems using appropriate information technologies.
- manipulate databases using database management software.
- build software solutions to business problems using Internet technologies.
- evaluate the impact of information and computer technology on organizations and society including e-commerce, ethics, copyright, privacy, and security.
CISC 320 Operating Systems

This course introduces the basic features of the Windows operating system for the PC. Topics include managing files, folders, and libraries, operating system services, program management, maintenance of disks and storage media, Windows desktop, browser basics, and the Windows help system. A brief introduction to security and the command prompt is also covered.

Student Learning Outcomes

Upon completion of this course, the student will be able to:
- analyze proper file naming conventions and explain file extensions and program associations.
- apply built-in file management utilities to create, organize, copy, move, rename, and delete files, folders, shortcuts, and libraries on storage devices or media.
- explain the purpose of and use the Windows Task Manager.
- explain the purpose of and use the Windows Print manager, describe the properties of Windows objects: desktop, icons, menu structure, tool-bars, windows, dialog boxes, controls, settings, and views.
- utilize the Control Panel to configure and/or customize the properties of the desktop, taskbar, display, keyboard, mouse, and other peripheral devices.
- utilize the various types of help available by using menus, keywords, or the Internet.
- apply basic Windows maintenance utilities.
- apply basic security including anti-virus use.
- use commands at the command prompt.
- use accessory and utility programs that are installed with Windows to accomplish tasks such as write memos, edit clip art, check disk drives, play audio and video files, and burn CDs or DVDs.
- describe the properties of Windows objects: desktop, icons, menu structure, tool-bars, windows, dialog boxes, controls, settings, and views.

CISC 323 Linux Operating System

This course introduces the Linux operating system for microcomputers. Concepts include the kernel, file structures, daemons, graphical user interfaces (GUI), open source, file security and permissions. Procedures for installing software, basic system administration and utilities, the Bourne again shell (BASH), command line interface utilities, and introduction to scripting topics are also covered.

Student Learning Outcomes

Upon completion of this course, the student will be able to:
- analyze the relationship of the operating system kernel, shell interface, windowing system, applications programs and the user to each other.
- utilize a command line interface (CLI) and GUI text editor to create and edit files in the Linux file system.
- employ the use of basic Linux GUI applets and CLI commands in file, disk, video and printer management.
- formulate CLI commands with correct syntax.
- compare Linux with other operating systems.
- utilize the Linux file system and apply industry standard file security.
- explain and define open-source theory, jargon, practice, and licensing.
- utilize a GUI and/or CLI to complete basic system administration and day-to-day tasks on the computer.

CISC 324 Intermediate Linux Operating System

This course is a continuation of CISC 323. Topics include boot loaders, Linux devices, and command line interface (CLI) system management utilities. It covers advanced Bourne Again Shell (BASH) shell scripting, including looping and decision making logic structures. Alternates to the BASH shell and regular expressions and text stream editors are introduced.

Student Learning Outcomes

Upon completion of this course, the student will be able to:
- set up a Linux and Microsoft Windows dual booting system.
- set up, configure, and troubleshoot a boot loader.
- utilize advanced BASH CLI utilities to inspect and maintain the system and its hardware.
- compare C shell, K shell, and BASH.
- create BASH script files utilizing looping structures: do, while, until.
- create BASH script files implementing decision making logic using if, for, case and nesting.
- describe the use of text stream editor and filters such as awk and sed.
- compose a regular expression for use by the grep utility.

CISC 332 z/OS System Services Structure
This course presents the structure and control blocks of the z/OS BCP (base control program) and system services. It prepares the new z/OS system programmer to identify potential bottlenecks and performance problems, perform initial error symptom gathering, and identify opportunities and requirements for tailoring a z/OS system. This course also provides prerequisite information needed for further training in specialized areas such as system measurement and tuning and system problem determination.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- explain the MVS (multiple virtual storage) functions and control blocks necessary to support a task in a multitasking and multiprocessing environment.
- describe the software and hardware functions that allow a program to interact with programs running in other address spaces, use data in other address spaces, and use data in data spaces.
- trace the flow of an I/O (input/output) operation from the initial request in the application program through the completion of data transfer.
- identify the control blocks that describe the current status of an I/O request.
- describe the functions of the z/OS BCP Virtual, Real, and Auxiliary Storage Managers.
- describe the functions performed by the Recovery Termination Manager and recovery management components to minimize failure impact and enhance error correction.
- select the appropriate IBM publication to provide further technical information (SRLs, Technical Bulletins, Self-study and other z/OS courses).
- describe the services provided by cross system extended services (XES).
- identify and explain the purpose of the cache, list, and lock structures.
- plan the implementation of the global resource serialization STAR environment.

CISC 333 SMP/E (System Modification Program Extended) for z/OS

This course covers the SMP/E skills needed in the installation and maintenance of optional features and maintenance in the z/OS operating environment. Topics include the SMP/E database and invoke SMP/E to add, modify, or replace system elements.

This course also covers the SMP/E tasks involved in installing a z/OS product. It emphasizes interpreting results of SMP/E processing. Additional SMP/E concepts include modification control statements, the consolidated software inventory, zone structure, and error analysis. SMP/E commands such as RECEIVE, APPLY, ACCEPT, RESTORE, REPORT, and LIST are discussed.

More advanced topics include automated SMP/E delivery of z/OS and product maintenance over the Internet with an automated SMP/E process that downloads and installs IBM preventive and corrective service over the Internet.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- describe how SMP/E is used as a tool for system maintenance.
- interpret modification control statements in a sample SYSMOD.
- create a consolidated software inventory database to support installation and maintenance requirements.
- use the SMP/E dialogs to install a product and its related service.
- manage exception SYSMOD data.
- describe the use of the primary and secondary data sets required by SMP/E.
- analyze output from SMP/E processing and resolve commonly encountered problems.
- describe the use of the REPORT command to determine software dependencies between zones.
- use the BUILDMODS process to create a function SYSMOD from an installed product and its service.
- use the new SMP/E functions to install software service automatically over the Internet.
- implement support for communication server FTP client.
- use the new RECEIVE ORDER command to order and install z/OS maintenance automatically over the Internet.

CISC 350 Introduction to Data Communications

This course introduces business data communication concepts, systems, technology, protocols, theory, and basic terminology. Specific topics include analog and digital data encoding and transmission; media; interfaces; packet, circuit, and broadcast networks; and data multiplexing.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- Explain the evolution of data communications and the impact of technology on communication methods in business and the home.
- Define data communications terminology.
- Analyze the hardware and software needed to communicate using a standalone computer or a local area network.
- Evaluate different methods used for data communications applications.
- Design and select the equipment specifications for a small home or office network.
- Explain the primary differences between various types of data communication technologies.
CISC 351 Introduction to Local Area Networks

This course introduces local area networks (LAN) and provides hands-on training in LAN applications and network administration. Topics include planning, installing, and maintaining a LAN, responsibilities of the system administrator, and basic network security principles.

Upon completion of this course, the student will be able to:

- describe the functions of a LAN and the devices that may reside on a LAN,
- examine the advantages and disadvantages of peer-to-peer LANs vs. domain-based LANs,
- explain LAN topologies, types of cabling, standards, media and access methods,
- perform the basic functions required for day-to-day LAN administration, such as: creating a directory structure and network shares, creating users and groups, defining user rights, setting access permissions, and configuring user profiles,
- analyze the advantages and disadvantages of resource sharing on a LAN and the factors to be considered when planning and implementing a LAN,
- analyze the security implications of peer-to-peer vs. centralized LAN administration,
- evaluate the security implications of a user being a member of multiple groups and the potential impacts on the effective permissions for the user,
- analyze best practices for sharing file resources and configure the Microsoft New Technology File System (NTFS) permissions for group and user needs,
- evaluate LAN security and configure shares, permissions and authentication security in accordance with best practices,
- create a plan to combat viruses, Trojans, network worms, spyware and adware as it relates to LAN security and file integrity.

CISC 361 Microcomputer Support Essentials - Preparation for A+ Certification

This course is the first of two courses covering support and repair for stand-alone personal computers. It includes training to troubleshoot hardware to a field replaceable component. Operating systems installation and simple networking are also covered. The course provides a firm grounding in the supporting software that runs the hardware and in distinguishing hardware from software problems. This course, along with CISC 363, prepares students for the Computing Technology Industry Association (CompTIA) A+ certification.

Upon completion of this course, the student will be able to:

- Identify the names, purpose, and characteristics of typical microcomputer system components.
- Install, configure, optimize and upgrade personal computer components for desktop computers.
- Identify tools, diagnostic procedures and troubleshooting techniques for personal computer components.
- Diagnose common problems associated with components based upon the symptoms.
- Define the types of random access memory (RAM), form factors, and operational characteristics.
- Distinguish between popular central processing unit (CPU) chips in terms of their basic characteristics and performance.
- Assemble and disassemble microcomputers to the component level.
- Perform preventative maintenance on personal computer components.

CISC 362 Microcomputer and Applications Support

This course is an in-depth investigation of the technical, business, soft, and self-management skills technicians need to provide effective customer service and support in an information technology (IT) environment. It introduces customer service and problem solving skills needed for success in a small- or large-business environment.

Upon completion of this course, the student will be able to:

- demonstrate proficiency in customer service skills in the areas of active listening, and written and oral communication.
- diagnose, document, and communicate microcomputer problems and solutions using acceptable terminology.
- analyze and troubleshoot hardware and software problems in a variety of multi-user computer lab environments.
- apply business and team building skills for technical professionals.
- identify the causes of stress in computer support and apply stress reduction coping skills.

CISC 363 Microcomputer Support Technical - Preparation for A+ Certification
This course is the second of two courses providing a foundation in personal computer (PC) support. Hands-on skills include advanced component installation and configuration, troubleshooting component hardware, and configuring and troubleshooting major operating systems and networking hardware. This course along with CISC 361 prepares students for the Computing Technology Industry Association (CompTIA) A+ Certification exam.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- Set up, demonstrate, and troubleshoot the three most commonly used PC operating systems.
- Assemble, administer, and troubleshoot a basic networking system.
- Demonstrate the installation, configuration, and troubleshooting of advanced computer devices.
- Differentiate types of physical network architectures.
- Explain disaster recovery procedures.
- Support, upgrade, and add peripheral devices to notebook computers.
- Identify and recover from viruses.
- Identify the fundamental principles of security.

CISC 495 Independent Studies in Computer Information Science - Core

Upon completion of this course, the student will be able to:

- Demonstrate application of industry knowledge and theoretical concepts in computer information science related to a transfer degree level career as written in the minimum three (3) learning objectives created by the student and his/her employer or work site supervisor at the start of the course.
- Make effective decisions, use workforce information, and manage his/her personal career plans.
- Behave professionally, ethically, and legally at work, consistent with applicable laws, regulations, and organizational norms.
- Behave responsibly at work, exhibiting initiative and self-management in situations where it is needed.
- Apply effective leadership styles at work, with consideration to group dynamics, team and individual decision making, and workforce diversity.
- Communicate in oral, written, and other formats, as needed, in a variety of contexts at work.
- Locate, organize, evaluate, and reference information at work.
- Demonstrate originality and inventiveness at work by combining ideas or information in new ways, making connections between seemingly unrelated ideas, and reshaping goals in ways that reveal new possibilities using critical and creative thinking skills such as logical reasoning, analytical thinking, and problem-solving.

CISC 498 Work Experience in Computer Information Science - Core

This course provides students with opportunities to develop marketable skills in preparation for employment or advancement within the field of computer information science. It is designed for students interested in work experience and/or internships in transfer-level degree occupational programs. Course content includes understanding the application of education to the workforce, completion of Title 5 required forms which document the student's progress and hours spent at the work site, and developing workplace skills and competencies.

During the semester, the student is required to complete 75 hours of related paid work experience, or 60 hours of related unpaid work experience for one unit. An additional 75 or 60 hours of related work experience is required for each additional unit. All students are required to attend the first class meeting, a mid-semester meeting, and a final meeting. Additionally, students who have not already successfully completed a Work Experience course will be required to attend weekly orientations while returning participants may meet individually with the instructor as needed. Students may take up to 16 units total across all Work Experience course offerings. This course may be taken up to four times when there are new or expanded learning objectives. Only one Work Experience course may be taken per semester.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- Demonstrate application of industry knowledge and theoretical concepts in computer information science related to a transfer degree level career as written in the minimum three (3) learning objectives created by the student and his/her employer or work site supervisor at the start of the course.
- Make effective decisions, use workforce information, and manage his/her personal career plans.
- Behave professionally, ethically, and legally at work, consistent with applicable laws, regulations, and organizational norms.
- Behave responsibly at work, exhibiting initiative and self-management in situations where it is needed.
- Apply effective leadership styles at work, with consideration to group dynamics, team and individual decision making, and workforce diversity.
- Communicate in oral, written, and other formats, as needed, in a variety of contexts at work.
- Locate, organize, evaluate, and reference information at work.
- Demonstrate originality and inventiveness at work by combining ideas or information in new ways, making connections between seemingly unrelated ideas, and reshaping goals in ways that reveal new possibilities using critical and creative thinking skills such as logical reasoning, analytical thinking, and problem-solving.

CISC 499 Experimental Offering in Computer Information Science - Core

This course is the second of two courses providing a foundation in personal computer (PC) support. Hands-on skills include advanced component installation and configuration, troubleshooting component hardware, and configuring and troubleshooting major operating systems and networking hardware. This course along with CISC 361 prepares students for the Computing Technology Industry Association (CompTIA) A+ Certification exam.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- Set up, demonstrate, and troubleshoot the three most commonly used PC operating systems.
- Assemble, administer, and troubleshoot a basic networking system.
- Demonstrate the installation, configuration, and troubleshooting of advanced computer devices.
- Differentiate types of physical network architectures.
- Explain disaster recovery procedures.
- Support, upgrade, and add peripheral devices to notebook computers.
- Identify and recover from viruses.
- Identify the fundamental principles of security.

CISC 110 Networking Technologies - Preparation for N+ Certification
This is an introductory course in networking software and hardware. Topics include communication protocols; local, wide area, and virtual networks; intra- and inter-networks; network architectures; topologies; cloud computing; security; and the Open Systems Interconnect (OSI) model. This course, along with CISN 111, provides preparation for the Computer Technology Industry Association N+ certification test.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- describe the function and responsibility of each of the seven layers of the OSI model.
- identify industry standards, types of applications, protocols, and network connection devices.
- describe the physical characteristics and Ethernet standards of coaxial cable, STP, UTP, and fiber-optic media.
- identify a variety of media types and their key characteristics, including cost, speed and capacity, resistance to interface, and ease of installation.
- explain basic data transmission concepts, including signaling, data modulation, multiplexing, bandwidth, baseband, and broadband.
- troubleshoot network devices and create a network map to be used for network troubleshooting.
- explain the purpose of ports and sockets, and identify the ports of several common network protocols.
- describe domain names and the name resolution process.
- identify and explain the functions of the core TCP/IP settings on a computer, including IP address, subnet mask, default gateway, and DNS servers.
- understand WLAN (wireless LAN) architecture, explore wireless security concerns and evaluate common problems experienced with wireless networks.
- demonstrate knowledge of network architectures, topology, hardware, and software.
- identify and test network cables and describe characteristics of NIC and Ethernet interfaces.

CISN 111 Intermediate Networking Technologies

This is an intermediate course in networking software and hardware. Topics include network operating systems setup, analyzing network performance, diagnosing and repairing of network problems, and network security techniques. This course, along with CISN 110, provides preparation for the Computer Technology Industry Association N+ certification test.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- identify and describe various types of wireless networking characteristics.
- describe and explain virtualization technologies - how they connect with a network and how infrastructure devices can be virtualized.
- identify the features and benefits of cloud computing.
- secure network connections using encryption protocols.
- explain the purposes of network segmentation.
- explain how virtual local area networks (VLANs) work and how they’re used.
- discuss physical security methods that prevent and detect intrusions.
- describe the basic concepts of network management.
- explain the most common wireless wide area network (WAN) technologies.
- identify best practices for incident response and disaster recovery.
- identify the fundamental elements of WAN service options.
- secure and troubleshoot a wireless (Wi-Fi) network.
- configure various security measures on a wireless network.
- track the processes of authentication, authorization, and auditing on a network.
- describe cloud computing categories and models, and discuss concerns regarding cloud connectivity and security.

CISN 118 Internet Protocol Subnetting

This course introduces Transmission Control Protocol/Internet Protocol (TCP/IP) address assigning and subnetting. Topics include a review of binary, hexadecimal, and decimal numbering systems, classes of Internet Protocol (IP) addresses, Classless Inter-domain Routing (CIDR), and Variable Length Subnet Masks (VLSM). The future of IP addressing, version 4 (IPV4) and version 6 (IPV6), is covered.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- Describe number system structures.
- Perform calculations using different number systems, especially adding and subtracting binary and hexadecimal numbers.
- Classify IP addresses.
- Convert binary number values to decimal number values, and decimal number values to binary number values.
- Evaluate a custom subnet mask for effectiveness in a given scenario.
- Evaluate solutions to problems using VLSMs.
- Analyze solutions to problems using CIDR.
- Explain the need for IPv6.
CISN 119 TCP/IP Protocols

Students will be able to:
- compare and contrast IPV6 and IPV4.

CISN 120 Beginning Network Administration with Linux

Students will be able to:
- describe the major components of a Linux network operating system.
- discuss Linux licensing and copyright issues in layman's terms.
- design, build, and maintain a logical and organized electronic file system.
- analyze and construct user accounts and groups using best practices for security.
- utilize the basic Linux network utilities to troubleshoot network connectivity.
- install and configure network printing resources.
- install and configure network/server applications.
- analyze system backup methodologies and best practices for scheduling backups and restoring files and system state data.
- plan and implement a recompile of the Linux kernel.
- research and identify good Internet resources for obtaining answers to common problems, network anomalies and Linux server problems.

CISN 121 Network Administration with Linux: LAN Services

Students will be able to:
- discuss core Linux intranet services and daemons.
- configure and troubleshoot core Linux intranet services and daemons.
- install and configure services to allow a Linux system to share network resources with other Linux systems and Microsoft Windows systems.
- customize and maintain auditing and system logs.
- analyze auditing and system event logs.
- install and use a MySQL SQL Server.

CISN 122 Network Administration with Linux: Internet Services
This course covers Linux network administration of Internet services. Topics focus on server and TCP/IP services including the internet services daemon (XINETD), file transfer protocol (FTP), email, domain name service (DNS), firewall, secure shell, and proxy services. Installing and configuring the Apache Web Server and Webmin (the Linux web based administration tool) are introduced.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- discuss core Linux Internet services and daemons.
- customize and troubleshoot core Linux Internet services and daemons.
- define and discuss key concepts related to email, web services, and firewalls.
- install, configure and use the major Linux daemons for Internet services such as email, firewall, etc.
- install, configure and use the Apache Web Server.
- install, configure and use the Webmin Linux web based administration tool.

CISN 140 CISCO Networking Academy (CCNA)tm: Networking Fundamentals

Upon completion of this course, the student will be able to:

- explain the importance of data networks and the Internet in supporting business communications and everyday activities.
- explain how communication works in data networks and the Internet.
- recognize the devices and services that are used to support communications across an Internetwork.
- use network protocol models to explain the layers of communications in data networks.
- describe the importance of addressing and naming schemes at various layers of data networks.
- describe the protocols and services provided by the application layer in the OSI and TCP/IP models and describe how this layer operates in various networks.
- analyze the operations and features of transport layer protocols and services.
- analyze the operations and feature of network layer protocols and services and explain the fundamental concepts of routing.
- design, calculate, and apply subnet masks and addresses to fulfill given requirements.
- describe the operation of protocols at the OSI data link layer and explain how they support communications.
- explain the role of physical layer protocols and services in supporting communications across data networks.
- explain fundamental Ethernet concepts such as media, services, and operation.
- employ basic cabling and network designs to connect devices in accordance with stated objectives.
- build a simple Ethernet network using routers and switches.
- use Cisco command-line interface (CLI) commands to perform basic router and switch configuration and verification.
- analyze the operations and features of common application layer protocols such as Hypertext Transfer Protocol (HTTP), Domain Name System (DNS), Dynamic Host Configuration Protocol (DHCP), Simple Mail Transfer Protocol (SMTP), Telnet, and File Transfer Protocol (FTP).
- utilize common network utilities to verify small network operations and analyze data traffic.

CISN 141 CISCO Networking Academy (CCNA)tm: Routing Protocols and Concepts

Upon completion of this course, the student will be able to:

- describe the purpose, nature, and operations of a router.
- explain the critical role routers play in enabling communications across multiple networks.
- describe the purpose and nature of routing tables.
- describe how a router determines a path and switches packets.
- explain the route look up process and determine the path packets will take in a network.
- configure and verify basic operations for a newly-installed router.
- describe, configure, and certify router interfaces.
- describe the purpose of static routes and the procedure for configuring them.
- configure and verify static and default routing.
describe the role of dynamic routing protocols and place these protocols in the context of modern network design.

- describe how metrics are used by routing protocols and identify the metric types used by dynamic routing protocols.
- identify the characteristics of distance vector routing protocols.
- describe the network discovery process of distance vector routing protocols using Routing Information Protocol (RIP).
- describe the functions, characteristics, and operations of the RIPv1 protocol.
- compare and contrast classful and classless IP addressing.
- describe classful and classless routing behaviors in routed networks.
- design and implement a classless IP addressing scheme for a given network.
- describe the main features and operations of the Enhanced Interior Gateway Routing Protocol (EIGRP).
- use advanced configuration commands with routers implementing EIGRP and OSPF.
- describe the basic features and concepts of link-state routing protocols.
- describe the purpose, nature, and operations of the Open Shortest Path First (OSPF) Protocol.
- configure and verify basic RIPv1, RIPv2, single area OSPF, and EIGRP operations in a small routed network.
- demonstrate comprehensive RIPv1 configuration skills.
- use router show and debug commands to troubleshoot common errors that occur in small routed networks.

CISN 142 CISCO Networking Academy (CCNA)tm: LAN Switching and Wireless

Units:	3
Hours:	54 hours LEC; 18 hours LAB
Prerequisite:	CISN 140 with a grade of "C" or better

This course focuses on Layer 2 switching protocols, concepts and technologies. Topics include hierarchy LAN design, basic switch concepts and configuration, Virtual LANs (VLANs), Virtual Trunking Protocol (VTP), Spanning Tree Protocol (STP), Inter-VLAN routing, basic wireless concepts and configuration. Implementing, verifying, troubleshooting, and configuring technologies in a small-to-medium network, including integrating wireless devices into a LAN, are also covered. This is the third course in preparation for Cisco CCNA certification examination. ARC is a certified Cisco Networking Academy and all courses are taught by Cisco Certified Academy Instructors (CCAI).

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- identify and correct common network problems at layers 1, 2, 3, and 7 using a layered model approach.
- interpret network diagrams.
- select the appropriate media, cables, ports, and connectors to connect switches to other network devices and hosts.
- explain the technology and media access control method for Ethernet networks.
- explain basic switch management concepts and the operation of Cisco switches.
- perform and verify initial switch configuration tasks including remote access management.
- describe enhanced switching technologies such as VLANs, VLAN Trunking Protocol (VTP), Rapid Spanning Tree Protocol (RSTP), Per VLAN Spanning Tree Protocol (PVSTP), and 802.1 q.
- describe how VLANs create logically separate networks and how routing occurs between them.
- configure, verify, and troubleshoot VLANs, trunking on Cisco switches, inter-VLAN routing, VTP, and RSTP.
- interpret the output of various show and debug commands to verify the operational status of a Cisco switched network.
- verify network status and switch operation using basic utilities such as ping, traceroute, Telnet, Secure Shell (SSH), Address Resolution Protocol (ARP), and ipconfig, as well as the show and debug commands.
- identify, prescribe, and resolve common switched network media issues, configuration issues, autonegotiation, and switch hardware failures.
- manage Cisco IOS software.
- manage Cisco IOS configuration files (save, edit, upgrade, and restore).
- describe standards associated with wireless media, such as IEEE Wi-Fi Alliance and ITU/FCC.
- identify and describe the purpose of the components in a small wireless network, such as Service Set Identification (SSID), Basic Service Set (BSS), and Extended Service Set (ESS).
- identify basic configuration parameters on a wireless network to ensure that devices connect to the correct access points.
- compare and contrast Wi-Fi Protected Access (WPA) security features and capabilities of open, Wired Equivalent Privacy (WEP), and WPA-1/2 networks.
- describe common wireless-network implementation issues such as interference and misconfiguration.

CISN 143 CISCO Networking Academy (CCNA)tm: Accessing the Wide Area Network

Units:	3
Hours:	54 hours LEC; 18 hours LAB
Prerequisite:	CISN 141 and 142 with grades of "C" or better

This course covers wide area networks (WAN) technologies to connect small- to medium-sized business networks. It focuses on Point to Point Protocol (PPP), Frame Relay, and broadband links. Topics include network security, traffic control and access control lists (ACLs), Virtual Private Networks (VPN) and network troubleshooting. IP addressing services Network Address Translation (NAT) and Dynamic Host Configuration Protocol (DHCP) are covered, and IPv6 is introduced. This is the fourth course in preparation for Cisco CCNA certification examination. ARC is a certified Cisco Networking Academy and all courses are taught by Cisco Certified Academy Instructors (CCAI).

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- describe the impact of Voice Over IP and Video Over IP applications on a network.
- identify and correct common network problems at layers 1, 2, 3, and 7 using a layered model approach.
- interpret network diagrams.
- describe the components required for network and Internet communications.
- implement basic switch security measures such as port security, trunk access, and management VLANs.
- explain the operation and benefits of DHCP and DNS.
- configure, verify, and troubleshoot DHCP and DNS operations on a router.
- describe current network security threats and explain how to implement a comprehensive security policy to mitigate common threats to network devices, hosts, and applications.
- describe the functions of common security appliances and applications.
- describe recommended security practices to secure network devices.
describe the purpose and types of access control lists (ACLs).
configure and apply ACLs based on network filtering requirements.
configure and apply an ACL to limit Telnet and SSH access to the router using the Security Device Manager command-line interface (SDM/CLI).
verify, monitor, and troubleshoot ACLs in a network environment.
explain the basic operation of Network Address Translation (NAT).
configure NAT for given network requirements using SDM/CLI.
troubleshoot NAT issues.
describe different methods for connecting to a WAN.
configure and verify a basic WAN serial connection.
configure and verify a Point-to-Point Protocol (PPP) connection between Cisco routers.
configure and verify Frame Relay on Cisco routers.
troubleshoot WAN implementation issues.
describe the importance, benefits, role, impact, and components of VPN technology.

CISN 299 Experimental Offering in Computer Information Science - Networking

Units: 0.5 - 4
Prerequisite: None.
Catalog Date: January 1, 2021

CISN 300 Network Systems Administration

Units: 3
Hours: 45 hours LEC; 27 hours LAB
Prerequisite: None.
Advisory: CISC 320, 350, and 351
Transferable: CSU
Catalog Date: January 1, 2021

This course covers the installation and configuration of a Windows server in a client/server network. Topics include: introduction to Active Directory, local storage, file and print services, Group Policy, and basic security. Additional topics include: implementing IPv4 and IPv6, Dynamic Host Configuration Protocol (DHCP), and Domain Name System (DNS) in Windows. It also introduces server virtualization using Hyper-V. This is one of three courses preparing students for the Microsoft Certified Solutions Associate MCSA: Windows Server certification exams.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- install and configure a Windows server.
- create, configure and implement a workgroup and a domain-based network using a Windows network operating system.
- examine and explain the administrative tools of a Windows server network operating system.
- describe and define the Windows Active Directory and its main features and uses.
- define and demonstrate the functions and configuration of Windows clients and servers in an Active Directory Domain environment.
- manage Active Directory Domain Services objects.
- configure automated Active Directory Domain Services administration.
- implement and configure IPv4 and IPv6 services.
- implement and configure Dynamic Host Configuration Protocol (DHCP).
- implement and configure Domain Name System (DNS).
- implement and configure local storage.
- implement and configure resource sharing including file and print services.
- analyze and construct user accounts and groups using best practices for security.
- implement Group Policy and secure Windows servers by using Group Policy Objects (GPOs).
- implement basic server virtualization by using Hyper-V.
- analyze and explain network resource utilization using Windows performance monitor, including performance counters and their implications.
- research and identify good Internet resources for obtaining answers to common problems, network anomalies and Windows server problems.

CISN 302 Intermediate Network Systems Administration

Units: 3
Hours: 45 hours LEC; 27 hours LAB
Prerequisite: CISN 300 with a grade of "C" or better
Transferable: CSU
Catalog Date: January 1, 2021

This course covers intermediate system administration in a Windows client/server network. Topics include core services such as user and group management, network access, and data security. Additional topics include patch management, file services, system monitoring and auditing, Active Directory and Domain Name System, and Network Policy and Group Policy. This is one of three courses preparing students for the Microsoft Certified Solutions Associate MCSA: Windows Server 2019 certification exams.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- deploy and maintain Windows Server images.
- manage and implement system updates and patches.
- configure and implement file services such as Distributed File System (DFS) and File Server Resource Manager (FSRM).
- optimize File Services.
- implement file/disk encryption.
- configure monitoring and advanced auditing.
- configure and troubleshoot Windows Domain Name System (DNS).
- configure, implement, and troubleshoot remote access including Windows Virtual Private Networking (VPN).
- install, configure, and troubleshoot Network Policy Server.
- implement Network Access Protection (NAP).
- maintain Active Directory domain services.
- manage user and service accounts.
- plan and implement Group Policy infrastructure.
- manage user desktops using Group Policy.

CISN 307 Windows Active Directory Services

Units: 3
Hours: 45 hours LEC; 27 hours LAB
Prerequisite: CISN 302 with a grade of "C" or better
Transferable: CSU
Catalog Date: January 1, 2021

This course covers how to install, configure, and administer Microsoft Windows Active Directory services. It also focuses on implementing Group Policy and understanding the Group Policy tasks required to manage users and computers. Group Policies are used to configure and manage the user desktop environment, configure and manage software, and implement and manage security settings. Installation and configuration of Domain Naming System (DNS) and Windows Internet Naming System (WINS) are covered, as well as publishing, replication and the backup of the directory services data base.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- design network architecture, topology, interdependence, and constraints in relation to an Active Directory domain.
- evaluate a plan to install, configure, and administer an Active Directory domain controller.
- analyze a plan to install, configure, administer, and evaluate Group Policy in an Active Directory environment.
- design Active Directory forests, trees, domains, and operational units.
- explain a plan to install, configure, and administer Windows Internet Naming System (WINS) services and settings.
- describe a plan to install, configure, and administer Domain Naming System (DNS) services and settings.
- formulate a plan to publish, backup, and replicate the Active Directory database.

CISN 308 Internetworking with TCP/IP

Units: 3
Hours: 45 hours LEC; 27 hours LAB
Prerequisite: CISN 302 with a grade of "C" or better
Transferable: CSU
Catalog Date: January 1, 2021

This course covers how to install, configure, manage, and support a network infrastructure using the Microsoft Windows Server products. It focuses on TCP/IP and related services, including Dynamic Host Configuration Protocol (DHCP), Domain Naming System (DNS), Windows Internet Naming Service (WINS), Internet Information Server (IIS), Public Key Infrastructure (PKI) and certificate service, Internet protocol security (IPSec), Network Address Translation (NAT), and remote access. It also covers configuring Windows as a network router, Virtual Private Network (VPN) connectivity and managing a Windows deployment using Remote Installation Services (RIS).

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- design an overall integration plan for implementing a network services infrastructure using TCP/IP, with connectivity to Netware, Macintosh and UNIX systems.
- evaluate a plan for workstation and server deployment using remote installation services.
- formulate a plan deploying the DHCP server service.
- analyze a plan deploying the DNS and WINS server services.
- explain a plan deploying network security using IPSec, PKI and certificate server services.
- describe a plan for Internet connectivity using NAT and Windows router.
- design a plan deploying the IIS server service.
- formulate a plan for deploying a Virtual Private Network.

CISN 499 Experimental Offering in Computer Information Science - Networking

Units: 0.5 - 4
Prerequisite: None
Transferable: CSU
Catalog Date: January 1, 2021

Computer Information Science - Programming (CISP) Courses

CISP 299 Experimental Offering in Computer Information Science - Programming

Units: 0.5 - 4
Prerequisite: None.
Catalog Date: January 1, 2021

CISP 300 Algorithm Design/Problem Solving

Units: 3
This course introduces methods for solving typical computer problems through algorithm design. Topics include assessing and analyzing computer problems in a top-down, divide-and-conquer approach that leads to a programming solution. It also covers programming plans and detailed design documents from which source code versions of programs are created.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- define operators, including arithmetic, comparison, and logical operators.
- differentiate control structures, including branches (conditional statements) and loops (pre-checking and post-checking loops).
- deduce post-condition from pre-condition for control structures, including assignment statements, branches, and loops.
- construct a trace table to emulate the execution of a program that utilizes variables, various control structures, data organizations, subroutines, and parameters.
- contrast the lifespan limits and behaviors of local variables, by-value parameters, and by-reference parameters.
- compare the two methods of passing results: by-reference parameters and return value.
- compare in-line copy-and-paste coding with structured subroutines in terms of maintainability, defect containment, testability, and other metrics.
- create a subroutine to abstract one or more similar blocks of in-line code using local variables, parameters, and return values.
- differentiate roles involved in software development, including developers, analysts, and test engineers.

CISP 310 Assembly Language Programming for Microcomputers

Units: 4
Hours: 54 hours LEC; 54 hours LAB
Prerequisite: CISP 360 or 480 with a grade of "C" or better
Transferable: CSU; UC (CISP 310 & 319 combined: maximum credit - one course)
C-ID: C-ID COMP 142
Catalog Date: January 1, 2021

This course covers the organization and behavior of real computer systems at the assembly-language level. Topics include the mapping of statements and constructs in a high-level language onto sequences of machine instructions, as well as the internal representation of simple data types and structures. Numerical computation is examined, noting the various data representation errors and potential procedural errors.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- write simple assembly language program segments.
- demonstrate how fundamental high-level programming constructs are implemented at the machine-language level.
- compare Reduced Instruction Set Computer (RISC) versus Complex Instruction Set Computer (CISC) architectures.
- diagnose assembly language programs with common and not-so-common defects.
- structure complex logic into well defined assembly language instruction sequences and subroutines.
- evaluate common coding mistakes in C/C++ in the context of the underlying assembly language implementation.
- describe von Neumann architecture and how its components interact.

CISP 350 Database Programming

Units: 3
Hours: 36 hours LEC; 54 hours LAB
Prerequisite: None.
Advisory: CISA 320 and CISC 310
Transferable: CSU
General Education: AA/AS Area II(b)
Catalog Date: January 1, 2021

This is an introductory course in Structured Query Language (SQL) database programming. Topics include database normalization, subqueries, joins, import/export, privileges, and Procedural Language (PL)/SQL programming.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- compare and contrast different database implementations.
- design databases conforming to normalization guidelines.
- create and maintain relational databases.
- construct subqueries and table joins.
- construct small programs using PL/SQL.
- import/export data.

CISP 360 Introduction to Structured Programming

Units: 4
Hours: 54 hours LEC; 54 hours LAB
Prerequisite: CISP 300 or 370 with a grade of "C" or better
Transferable: CSU; UC
General Education: AA/AS Area II(b)
C-ID: C-ID COMP 112
Catalog Date: January 1, 2021
This course is an introduction to structured programming and objects. Topics include program design, documentation, testing, and debugging, as well as data representation, data types, variables, constants, and operators. It also includes control structures, functions, interactive and file input/output, standard libraries, arrays, pointers, structures, classes, and objects.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- develop efficient algorithms for the solution of problems using the control structures of structured programming
- implement suitable data structures to support a given algorithm
- formulate and implement algorithms to solve complex problems using a high-level language
- use the top-down development approach to implement modular, maintainable programs
- apply the software development life-cycle for program design, development, coding style, documentation, and testing
- assess the efficiency of differing solutions to a problem
- analyze an existing algorithm implementation for errors, then develop solution program code to correct the errors
- design and use classes and objects
- compare procedural and object-oriented approaches to problem solving

CISP 362 Programming for Mobile Devices I

<table>
<thead>
<tr>
<th>Units:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours:</td>
<td>54 hours LEC; 54 hours LAB</td>
</tr>
<tr>
<td>Prerequisite:</td>
<td>None.</td>
</tr>
<tr>
<td>Corequisite:</td>
<td>CISP 300 or 370</td>
</tr>
<tr>
<td>Transferable:</td>
<td>CSU</td>
</tr>
<tr>
<td>Catalog Date:</td>
<td>January 1, 2021</td>
</tr>
</tbody>
</table>

This course introduces mobile device programming, including devices such as cell phones and tablets. Topics include development tools, user interface design, documentation, testing, debugging, and publishing.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- acquire and install the necessary development tools for mobile device software development.
- develop basic programs with a graphical user interface.
- test and debug programs with a graphical user interface.
- publish mobile device programs.
- utilize hardware devices commonly found on mobile devices, such as GPS, accelerometer, compass, proximity sensor, and camera.

CISP 363 Programming for Mobile Devices II

<table>
<thead>
<tr>
<th>Units:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours:</td>
<td>54 hours LEC; 54 hours LAB</td>
</tr>
<tr>
<td>Prerequisite:</td>
<td>CISP 362 with a grade of "C" or better</td>
</tr>
<tr>
<td>Corequisite:</td>
<td>CISP 360</td>
</tr>
<tr>
<td>Transferable:</td>
<td>CSU</td>
</tr>
<tr>
<td>Catalog Date:</td>
<td>January 1, 2021</td>
</tr>
</tbody>
</table>

This course introduces intermediate level programming for mobile devices such as cell phones and tablets. Topics include the syntax of Kotlin, object-oriented programming, and mobile-specific techniques and considerations.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- develop procedural logic for mobile applications.
- synthesize object-oriented class structure to organize components of mobile applications.
- evaluate correctness and efficiency of mobile applications.
- analyze programming problems.
- formulate object-oriented solutions to mobile programming problems.
- identify various types of processes on a mobile platform.
- design mobile applications that utilize the user interface.

CISP 370 Beginning Visual Basic

<table>
<thead>
<tr>
<th>Units:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours:</td>
<td>54 hours LEC; 54 hours LAB</td>
</tr>
<tr>
<td>Prerequisite:</td>
<td>None.</td>
</tr>
<tr>
<td>Advisory:</td>
<td>CISC 310 and CISP 300</td>
</tr>
<tr>
<td>Transferable:</td>
<td>CSU</td>
</tr>
<tr>
<td>Catalog Date:</td>
<td>January 1, 2021</td>
</tr>
</tbody>
</table>

This introductory programming course covers the development of Windows-based desktop applications using Visual Basic (VB). Topics include best practices for Graphical User Interface (GUI) design, use of the VB application development software, organizing code into procedures and functions, variable scope, structures, arrays, input data validation, calculation, file input and output, and multiple-window applications. This course is designed for those who want a strong foundation in basic programming and building GUI applications.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- using the VB Integrated Development Environment, design and implement a GUI application using single or multiple windows.
- design and implement variables at the class level and the procedure level.
- design and implement data storage strategies for text files and databases.
- design and implement structure data types.
- design and implement programming logic using conditional execution structures and looping structures.
- design and implement programming logic using VB procedures and functions and developer defined procedures and functions, and correctly pass parameters to the procedures and functions both by value and by reference.
- design and implement input data validation and calculation.
- organize data in single dimension and multi-dimension arrays.
- build, compile, execute, test, and debug applications.

CISP 371 Intermediate Visual Basic

Units: 4
Hours: 54 hours LEC; 54 hours LAB
Prerequisite: CISP 370 with a grade of "C" or better
Transferable: CSU
Catalog Date: January 1, 2021

This course in intermediate Visual Basic (VB) programming further examines techniques to solve programming problems. Topics include classes, objects, properties, methods, procedures, functions, hierarchies, inheritance, multiple forms, components, tables, databases, datasets, queries, menus, toolbars, report creation, testing, and debugging.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- create a plan and a program that provides a solution to a well-defined programming problem.
- using tables and datasets, create programs that use text files and database files by linking, importing, exporting, and querying with emphasis on SQL.
- create user interfaces which use multiple forms, classes, objects, properties, methods, procedures, functions, hierarchies, inheritance, components, tables, menus, and toolbars.
- create event code for objects.
- create reports using Crystal Reports.
- build, compile, execute, test, and debug programs.

CISP 400 Object Oriented Programming with C++

Units: 4
Hours: 54 hours LEC; 54 hours LAB
Prerequisite: CISP 360 or 480 with a grade of "C" or better
Advisory: CISC 323
Transferable: CSU; UC
Catalog Date: January 1, 2021

This course is an introduction to the C++ programming language and object-oriented programming in the Linux/UNIX environment. Topics include a programming languages overview, program analysis and design, encapsulation, overloading, classes, inheritance, virtual functions, polymorphism, templates, exception handling, and the standard template library. In addition, basic Linux/UNIX commands and make files are covered.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- summarize the evolution of programming paradigms and identify the characteristics of each style.
- choose Linux/UNIX commands to perform various tasks.
- create Linux/UNIX make files to automate the compilation and linking of multi-file C++ programs.
- differentiate between what is done by the preprocessor, the compiler, and the linker.
- design C++ classes that follow given specifications.
- evaluate different object-oriented solutions to programming problems.
- analyze programming problems.
- formulate object-oriented solutions to programing problems.

CISP 401 Object Oriented Programming with Java

Units: 4
Hours: 54 hours LEC; 54 hours LAB
Prerequisite: CISP 360 with a grade of "C" or better
Transferable: CSU; UC
Catalog Date: January 1, 2021

This course introduces object-oriented programming using the Java programming language. Topics include objects, inheritance, polymorphism, interfaces, abstract classes, inner classes, error handling, graphical user interfaces (GUI), applets, threads, files, databases, and packages.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- manipulate Java language syntax.
- develop event driven programs for both applets and applications.
- compare the Java language to other programming languages.
- design software using object-oriented methods.
- develop programs using inheritance and polymorphism.
- write database applications using embedded Structured Query Language (SQL).
CISP 430 Data Structures

Upon completion of this course, the student will be able to:

- develop multi-threaded applications.
- use Java to create graphical user interfaces.

This course applies object-oriented techniques for systematic problem analysis and the managing of program complexity using abstraction. Specification, design, coding, testing, and documentation of large multi-file programs are covered. It uses advanced language features such as classes, strings, non-text files, pointers, and recursion. Abstract data types such as stacks, queues, lists, binary trees, heaps/priority queues, hash tables, and graphs are examined. Various sorting and searching algorithms are presented and analyzed using Big O notation.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- propose solutions to complex programming problems and create code to implement these solutions.
- implement singly linked lists, doubly linked lists, circular linked lists, stacks, queues, trees, and graphs.
- implement recursive modules.
- implement various sorting and searching techniques.
- estimate the efficiency of various sorting and searching algorithms using Big O notation.

CISP 440 Discrete Structures for Computer Science

Upon completion of this course, the student will be able to:

- analyze how formal tools of symbolic logic are used to model real-life situations, including those arising in computing contexts such as program correctness, database queries, and algorithms.
- compare mathematical induction as a proof technique to recursion and recursively defined structures as programming concepts.
- analyze a problem to create relevant recurrence equations.
- design different traversal methods for trees and graphs.
- choose between the binomial theorem for independent events and Bayes’ theorem for dependent events.

CISP 480 Honors Introduction to Structured Programming

Upon completion of this course, the student will be able to:

- develop, implement, and evaluate expressions using the operators prevalent in most programming languages including arithmetic, comparison, and logical operators
- develop and implement basic algorithms using sequence, selection, and repetition
- deduce pre- and post-conditions for control structures and modules
- construct a trace table to emulate the execution of a program that utilizes variables, various control structures, data organizations, modules, and parameters
- differentiate roles involved in software development, including developers, analysts, and test engineers
- develop efficient algorithms for the solution of problems using structured programming techniques
- implement suitable data structures to support a given algorithm
- formulate and implement algorithms to solve complex problems using a high-level language
- use the top-down, divide and conquer development approach to implement modular, maintainable programs
- assess the efficiency of differing solutions to a problem
- analyze an existing algorithm implementation for errors, then develop solution program code to correct the errors
- utilize standard libraries for common tasks such as file input/output and mathematical operations

This honors course combines the content of both CISP 300 and CISP 360 and presents it in an accelerated fashion emphasizing projects and collaborative work. It introduces methods for solving typical computer problems by assessing and analyzing computing problems, performing algorithm design using a top-down, divide and conquer approach, and continues with implementation, documentation, testing, and debugging. Topics include structured programming, data representation, data types, variables, constants, operators, and expression evaluation. It also includes control structures, functions, interactive and file input/output, standard libraries, arrays, pointers, structures, classes, and objects. Pseudocode and an object-oriented programming language are used to create program solutions. This course is not open to students who have completed CISP 300 or CISP 360.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- estimate the efficiency of various sorting and searching algorithms using Big O notation.
• design and use classes and objects
• compare procedural and object-oriented approaches to problem solving
• apply the software development life-cycle for program design, development, coding style, documentation, and testing

CISP 499 Experimental Offering in Computer Information Science - Programming

Units: 0.5 - 4
Prerequisite: None.
Transferable: CSU
Catalog Date: January 1, 2021

Computer Information Science - Security (CISS) Courses

CISS 300 Introduction to Information Systems Security

Units: 1
Hours: 18 hours LEC
Prerequisite: None.
Advisory: CISC 320, 350, and 351
Transferable: CSU
Catalog Date: January 1, 2021

This course provides an introduction to network-based and Internet-based security applications and standards. Topics include encryption, security protocols, network security applications, digital signatures, protecting computers and the network from viruses, Trojans, spyware, unsolicited email, and public and private key exchange.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

• describe the fundamental concepts of the cyber security discipline and use to provide system security.
• describe potential system attacks and the actors that might perform them.
• describe cyber defense tools, methods and components, and apply cyber defense methods to prepare a system to repel attacks.
• describe appropriate measures to be taken in the event of a system compromise.
• describe why each principle is important to security and how it enables the development of security mechanisms that can implement desired security policies.

CISS 310 Network Security Fundamentals

Units: 3
Hours: 45 hours LEC; 27 hours LAB
Prerequisite: None.
Advisory: CISS 140 or 300
Transferable: CSU
Catalog Date: January 1, 2021

This course is an introduction to the fundamental principles and skills of Information Technology security and risk management at the organizational level. Topics include network security, compliance and operational security, threats and vulnerabilities, application and data security, host security, access control and identity management, and cryptography. It also covers the required content of the Computing Technology Industry Association (CompTIA) Security+.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

• describe the fundamental concepts and principles of the cyber security discipline and use to provide system security.
• evaluate why each principle is important to security and how it enables the development of security mechanisms that can implement desired security policies.
• describe the hardware components of modern computing environments and their individual functions.
• identify the Federal, State and Local Cyber Defense partners/structures.
• explain the basic security implications of modern computing environments.
• analyze cyber defense tools, methods and components and apply cyber defense methods to prepare a system to repel attacks.
• identify appropriate measures to be taken should a system compromise occur.
• properly use the vocabulary associated with cyber security.
• analyze common security failures and identify specific design principles that have been violated.
• evaluate different types of attacks and their characteristics.
• identify the bad actors in cyberspace and compare and contrast their resources, capabilities/techniques, motivations and aversion to risk.
• given a specific scenario, identify the design principles involved or needed.
• understand the interaction between security and system usability and the importance for minimizing the effects of security mechanisms.
• compare and contrast different types of standards including: laws, regulations, policies, voluntary, and framework-based standards.
• assess the impact of legal/regulatory standards on a given system.

CISS 315 Ethical Hacking

Units: 3
Hours: 45 hours LEC; 27 hours LAB
Prerequisite: None.
Corequisite: CISS 310
Advisory: CISC 300
Transferable: CSU
Catalog Date: January 1, 2021
This course introduces the network security specialist to the various methodologies for attacking a network. Topics include the concepts, principles, and techniques necessary to attack and disable a network within the context of properly securing a network. It emphasizes network attack techniques and methodologies, and appropriate defenses and countermeasures. Supplementary hardware and software may be required.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- examine how the internet is used for cybercrime, cyber-stalking, and other abusive behaviors.
- describe different types of attacks and their characteristics.
- examine the placement of security functions in a system and describe the strengths and weaknesses.
- identify the bad actors in cyberspace and compare and contrast their resources, capabilities/techniques, motivations and aversion to risk.
- examine how the internet is used for cybercrime, cyber-stalking, and other abusive behaviors.
- describe the role of cybersecurity in supporting and encouraging ethics, as well as where cybersecurity practices can cause ethical conflicts.
- examine diverse ethical dilemmas.
- explain how ethical foundations are applied to situations arising from the interconnected world.
- evaluate the effectiveness of applications of cybersecurity in preventing crime and abuse.
- describe what an ethical hacker can and cannot do legally.
- identify ports, protocols, and services.
- construct software configuration settings that will assist in protecting the PC.
- defend a computer and a LAN against a variety of different types of security attacks using a number of hands-on techniques.
- practice and use safe techniques on the Internet.
- identify the tools and methods a "hacker" uses to break into a computer or network.
- evaluate the effectiveness of applications of cybersecurity in preventing crime and abuse.
- plan, organize, and perform penetration testing on a simple network.

CISS 316 Cisco Networking Academy™: CCNA Cybersecurity Operations

This course provides the knowledge and skills needed by today's organizations that are challenged with rapidly detecting cybersecurity breaches and effectively responding to security incidents. It provides an introduction to the knowledge and skills needed for a Security Analyst working with a Security Operations Center team. This course also covers core security skills needed for monitoring, detecting, investigating, analyzing and responding to security events, to protect systems and organizations from cybersecurity risks, threats, and vulnerabilities.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- implement and manage Cisco secure networks.
- evaluate risk, vulnerability, and threats for network devices.
- describe the key concepts in network defense (defense in depth, minimizing exposure, etc.).
- evaluate and apply the National Institute of Standards and Technology (NIST) Cybersecurity Framework.
- apply and manage cyber defense methods to prepare a system to repel attacks.
- evaluate how network operational procedures relate to network security.
- analyze how security policies are implemented on systems to protect a network.

CISS 321 Scripting for Cyber Security

This course is designed to cover tools that are commonly used by Information Security Professionals. Modern Operating Systems and scripting languages will be discussed as well as utilities and technologies that enable them. Topics including securing, hardening systems, incident response, automating tasks, auditing, and vulnerability assessment will be covered.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- demonstrate proficiency in the use of scripting languages to write simple scripts (e.g., to automate system administration tasks).
- write simple linear and looping scripts.
- modify current security application scripts for a specific network environment.
- evaluate scripting languages for different tasks.
- write simple and compound conditions within a programming language or similar environment (e.g., scripts, macros, SQL).
- demonstrate proficiency in the use of a programming language to solve security problems.

CISS 330 Implementing Internet Security and Firewalls

This course introduces the network security specialist to the various methodologies for attacking a network. Topics include the concepts, principles, and techniques necessary to attack and disable a network within the context of properly securing a network. It emphasizes network attack techniques and methodologies, and appropriate defenses and countermeasures. Supplementary hardware and software may be required.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- examine how the internet is used for cybercrime, cyber-stalking, and other abusive behaviors.
- describe different types of attacks and their characteristics.
- examine the placement of security functions in a system and describe the strengths and weaknesses.
- identify the bad actors in cyberspace and compare and contrast their resources, capabilities/techniques, motivations and aversion to risk.
- examine how the internet is used for cybercrime, cyber-stalking, and other abusive behaviors.
- describe the role of cybersecurity in supporting and encouraging ethics, as well as where cybersecurity practices can cause ethical conflicts.
- examine diverse ethical dilemmas.
- explain how ethical foundations are applied to situations arising from the interconnected world.
- evaluate the effectiveness of applications of cybersecurity in preventing crime and abuse.
- describe what an ethical hacker can and cannot do legally.
- identify ports, protocols, and services.
- construct software configuration settings that will assist in protecting the PC.
- defend a computer and a LAN against a variety of different types of security attacks using a number of hands-on techniques.
- practice and use safe techniques on the Internet.
- identify the tools and methods a "hacker" uses to break into a computer or network.
- evaluate the effectiveness of applications of cybersecurity in preventing crime and abuse.
- plan, organize, and perform penetration testing on a simple network.
This course covers network and Internet security and deployment of industry standard countermeasures, including configuring Virtual Private Network (VPN) connections. Topics include the evaluation, implementation, and management of secure remote-access technologies. Also covered is the configuration of network firewalls, and allowing access to key services while maintaining security. This course is not open to students who have completed CISS 325.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- analyze problems, recommend solutions, products, and technologies to meet business objectives.
- recommend best security practices to achieve stated business objectives based on risk assumptions.
- actively protect information technology assets and infrastructure from external and internal threats.
- monitor systems for anomalies, proper updating, and patching.
- evaluate and perform planning, testing, and implementation of software and hardware deployed.
- assist in incident responses for any breaches, intrusions, or theft.
- recommend best practices for effective configurations and maintenance of Virtual Private Networks (VPNs) and firewalls.
- explain how network defense tools (firewalls, IDS, etc.) are used to defend against attacks and mitigate vulnerabilities.
- implement Network Security Components (Data Loss Prevention, VPNs/firewalls).

CISS 341 Implementing Windows Operating System Security

Upon completion of this course, the student will be able to:

- evaluate network security from the perspective of the Microsoft Windows client operating system.
- assess how to secure data using a Microsoft Windows operating system.
- demonstrate use of the tools required to configure client operating system services.
- examine and configure network services in accordance with best current security practices.
- differentiate, describe, and configure file sharing services and file system security permissions in accordance with best security practices.
- evaluate and describe the relationships between major network services.
- compare and contrast the roles of security, ethics, and privacy management issues regarding data storage.
- define and differentiate user rights and file permissions in terms of security.
- set up an appropriate file encryption method to optimize security on a multi-user workstation.

CISS 342 Implementing Linux Operating System Security

Upon completion of this course, the student will be able to:

- evaluate network security from the perspective of a Linux/UNIX client operating system.
- assess how to secure data using a Linux/UNIX operating system.
- demonstrate use of the tools required to configure client operating system services.
- examine and configure network services in accordance with best current security practices.
- differentiate and describe file sharing services and file system security permissions in accordance with industry standard security practices.
- evaluate and describe the relationships between major network services.
- compare and contrast the roles of security, ethics, and privacy management issues regarding data storage.
- define and differentiate user rights and file permissions in terms of security.
- configure an appropriate file encryption method to optimize security on a multi-user workstation.

CISS 350 Disaster Recovery

Upon completion of this course, the student will be able to:

- evaluate network security from the perspective of a Linux/UNIX client operating system.
- assess how to secure data using a Linux/UNIX operating system.
- demonstrate use of the tools required to configure client operating system services.
- examine and configure network services in accordance with best current security practices.
- configure file sharing services and file system security permissions in accordance with industry standard security practices.
- evaluate and describe the relationships between major network services.
- compare and contrast the roles of security, ethics, and privacy management issues regarding data storage.
- define and differentiate user rights and file permissions in terms of security.
- configure an appropriate file encryption method to optimize security on a multi-user workstation.
This course provides methods for identifying vulnerabilities and implementing countermeasures to prevent and mitigate failure risks in the information technology infrastructure for the business enterprise. Topics include disaster recovery, development of a disaster recovery plan, risk assessment, and development and implementation of disaster recovery policies and procedures.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- compare and contrast different types of standards that impact information systems including: laws, regulations, policies, voluntary, and framework-based standards.
- list the applicable laws and policies related to cyber defense and describe the major components of each pertaining to the storage and transmission of data.
- outline and explain the roles of personnel in planning and managing security, including: board of directors, senior management, Chief Information Security Officer (CISO), IT management (CIO, IT Director, etc.), functional area management, information security personnel, and end users.
- examine the placement of security functions in a system and describe the strengths and weaknesses.
- develop contingency plans for various size organizations to include: business continuity, disaster recovery, technology recovery, and incident response.
- develop system-specific plans for: the protection of intellectual property, the implementation of access controls, and patch and change management.
- describe responsibilities related to the handling of data as it pertains to legal, ethical, and/or agency auditing issues.
- develop a security program, identifying goals, objectives, and metrics.
- apply knowledge to effectively manage a security program.
- assess the effectiveness of a security program.
- describe how risk relates to a system security policy.
- describe various risk analysis methodologies.
- evaluate, categorize, and recommend appropriate responses to risks with respect to technology, individuals, and in the enterprise.
- compare the advantages and disadvantages of various risk assessment methodologies.
- select the optimal risk assessment methodology based on needs, advantages, and disadvantages.

CISS 360 Computer Forensics and Investigation

This course introduces the methods used to conduct a computer forensics investigation. Topics include an overview of computer forensics as a profession, the computer investigation process, operating systems' boot processes and disk structures, data acquisition and analysis, ethics, and a review of standard computer forensic tools. The course topics map to the objectives of the International Association of Computer Investigative Specialists (IACIS) certification.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- define computer forensics concepts as a profession.
- list the applicable laws and policies related to cyber defense and describe the major components of each pertaining to the storage and transmission of data.
- discuss the rules, laws, policies, and procedures that affect digital forensics.
- identify how the type of legal dispute (civil, criminal, private) affects the evidence used to resolve it.
- describe their responsibilities related to the handling of data as it pertains to legal, ethical and/or agency auditing issues.
- assess and compare computer forensic tools used in investigations.
- construct and employ digital evidence controls to safeguard the results of the forensic investigation.
- describe the steps in performing digital forensics from the initial recognition of an incident through the steps of evidence gathering, preservation and analysis, through the completion of legal proceedings.
- evaluate methods for the acquisition/analysis of widespread, non-PC devices.
- critique a forensic analysis and prepare reports for private-sector management and/or law enforcement.
- prepare a report on email investigation methods for a forensic analysis.
- describe and compare graphic image recovery methods.
- compose forensic analysis reports using technical jargon and non-technical terms.
- use one or more common DF tools, such as EnCase, FTK, ProDiscover, Xways, SleuthKit.

Computer Information Science - Web (CISW) Courses

CISW 299 Experimental Offering in Computer Information Science - Web

This course provides methods for identifying vulnerabilities and implementing countermeasures to prevent and mitigate failure risks in the information technology infrastructure for the business enterprise. Topics include disaster recovery, development of a disaster recovery plan, risk assessment, and development and implementation of disaster recovery policies and procedures.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- compare and contrast different types of standards that impact information systems including: laws, regulations, policies, voluntary, and framework-based standards.
- list the applicable laws and policies related to cyber defense and describe the major components of each pertaining to the storage and transmission of data.
- outline and explain the roles of personnel in planning and managing security, including: board of directors, senior management, Chief Information Security Officer (CISO), IT management (CIO, IT Director, etc.), functional area management, information security personnel, and end users.
- examine the placement of security functions in a system and describe the strengths and weaknesses.
- develop contingency plans for various size organizations to include: business continuity, disaster recovery, technology recovery, and incident response.
- develop system-specific plans for: the protection of intellectual property, the implementation of access controls, and patch and change management.
- describe responsibilities related to the handling of data as it pertains to legal, ethical, and/or agency auditing issues.
- develop a security program, identifying goals, objectives, and metrics.
- apply knowledge to effectively manage a security program.
- assess the effectiveness of a security program.
- describe how risk relates to a system security policy.
- describe various risk analysis methodologies.
- evaluate, categorize, and recommend appropriate responses to risks with respect to technology, individuals, and in the enterprise.
- compare the advantages and disadvantages of various risk assessment methodologies.
- select the optimal risk assessment methodology based on needs, advantages, and disadvantages.

CISW 300 Web Publishing

This course introduces the methods used to conduct a computer forensics investigation. Topics include an overview of computer forensics as a profession, the computer investigation process, operating systems' boot processes and disk structures, data acquisition and analysis, ethics, and a review of standard computer forensic tools. The course topics map to the objectives of the International Association of Computer Investigative Specialists (IACIS) certification.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- define computer forensics concepts as a profession.
- list the applicable laws and policies related to cyber defense and describe the major components of each pertaining to the storage and transmission of data.
- discuss the rules, laws, policies, and procedures that affect digital forensics.
- identify how the type of legal dispute (civil, criminal, private) affects the evidence used to resolve it.
- describe their responsibilities related to the handling of data as it pertains to legal, ethical and/or agency auditing issues.
- assess and compare computer forensic tools used in investigations.
- construct and employ digital evidence controls to safeguard the results of the forensic investigation.
- describe the steps in performing digital forensics from the initial recognition of an incident through the steps of evidence gathering, preservation and analysis, through the completion of legal proceedings.
- evaluate methods for the acquisition/analysis of widespread, non-PC devices.
- critique a forensic analysis and prepare reports for private-sector management and/or law enforcement.
- prepare a report on email investigation methods for a forensic analysis.
- describe and compare graphic image recovery methods.
- compose forensic analysis reports using technical jargon and non-technical terms.
- use one or more common DF tools, such as EnCase, FTK, ProDiscover, Xways, SleuthKit.
This course is an introduction to publishing on the World Wide Web. Topics include creating web pages with the Hyper Text Markup Language (HTML), organizing a series of pages into a web site, and uploading web pages to a server. This course makes extensive use of the computer tools necessary to insert HTML tags, create images, and view web documents. It takes beginning web designers through the process of designing, building, and publishing a working web site.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- develop web pages applying structured design principles using current standards of Hyper Text Markup Language (HTML)
- publish documents on the World Wide Web using File Transfer Protocol (FTP) software and Secure Shell (SSH/Telnet) software
- build, maintain, and organize a working web account on a web server
- develop web site design concepts using both Cascading Style Sheet (CSS) structures and table structures
- develop web site navigation using links, buttons, and menu options
- create web forms using standard HTML form tags
- produce basic web graphics and incorporate them on a web page using HTML and CSS

CISW 304 Cascading Style Sheets

Units: 2
Hours: 27 hours LEC; 27 hours LAB
Prerequisite: CISW 300 with a grade of "C" or better
Transferable: CSU
Catalog Date: January 1, 2021

This course continues the study of technical aspects of standards-based web design for experienced students and web professionals. Topics include the separation of content from presentation, dynamic user interaction, and designing for alternative devices using Cascading Style Sheets (CSS) in combination with Hypertext Markup Language (HTML).

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- describe the differences among versions of CSS, including issues of cross-platform compatibility.
- utilize proper CSS syntax for developing internal and external style sheets.
- differentiate between the class and id attributes, determine which should be used for a specific situation, and apply it using industry standards.
- combine selectors to refine style definitions for a group of elements and/or contextually to one or more elements when used together.
- apply CSS Positioning (CSS-P) to position and layer objects on multiple web pages.

CISW 310 Advanced Web Publishing

Units: 4
Hours: 54 hours LEC; 54 hours LAB
Prerequisite: CISW 300 with a grade of "C" or better
Transferable: CSU
Catalog Date: January 1, 2021

This course builds upon previous web publishing concepts and study. The primary focus of this course is the systematic development of interactive web sites. Topics include cascading style sheets, dynamic HTML, forms, client-side scripting with JavaScript, Common Gateway Interface (CGI) scripting with Perl, and web-database interactivity.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- develop web pages using advanced design concepts with Cascading Style Sheets (CSS)
- apply the basic concepts and syntax of JavaScript
- construct web pages with structured HTML that incorporate basic JavaScript functions such as mouse rollovers, window popups, slideshows, and form validation
- produce basic web pages using a server-side scripting language such as Perl
- develop a simple server side database using database software such as MySQL and integrate it into a web page using a server-side scripting language
- incorporate JavaScript with the server-side scripting language and database software

CISW 321 Web Site Development using Dreamweaver

Units: 3
Hours: 36 hours LEC; 54 hours LAB
Prerequisite: CISC 305 and CISW 300
Advisory: None.
Transferable: CSU
Catalog Date: January 1, 2021

This course covers the use of Dreamweaver, a visual web-authoring tool, to develop and publish websites. Topics include creating web pages that contain text, images, links, tables, forms, Cascading Style Sheets, and image maps, as well as how to enhance web pages with Flash elements and built-in scripting languages. Additional topics include developing effective website structures, using website management tools, website documentation, making global updates to a website, and using advanced Dreamweaver features.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

- utilize web authoring software to create, manage, and maintain websites.
- develop and manage effective website file structures.
- design and create websites that have effective information design and site navigation.
• develop standards for website consistency.
• utilize built-in scripting languages to industry standard for web page enhancements.
• create documentation for web pages, websites, and website project work flow.
• plan and construct websites.

CISW 350 Imaging for the Web

Units: 1
Hours: 18 hours LEC; 18 hours LAB
Prerequisite: None.
Advisor: CISC 306 or CISW 300
Transferable: CSU
Catalog Date: January 1, 2021

This course takes an in-depth look at graphics for the Web. Industry standard graphic software is used to technically develop original graphics as well as to manipulate found imagery. Topics include understanding Web file formats, compressing graphics for use on the Web, editing and enhancing graphics, extracting elements, and using layers. This course also covers creating buttons and intuitive navigational elements, making background textures and images, and creating simple animation/video.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

• identify the various graphics file formats and select when to use one format over the other
• compress and optimize graphics for quick uploading on Web pages
• edit and enhance photos using graphic software tools
• select specific areas of an image to extract, copy, combine, or reposition
• create, view, hide, arrange, and select layers
• create buttons, banners and navigation icons for Web pages
• assemble and manipulate background images and textures
• compose simple compressed animations and videos for use in Web pages

CISW 355 Web Imaging Projects

Units: 2
Hours: 27 hours LEC; 27 hours LAB
Prerequisite: ARTNM 402 or CISW 350 with a grade of "C" or better
Advisor: CSU
Transferable: None.
Catalog Date: January 1, 2021

This course is a continuation of CISW 350. It covers the creation of graphics for the Web for marketing and advertising. It introduces the steps, procedures, and common problems encountered when producing quality graphics for professional websites. Topics include compressing and upload times, cropping and resizing, digital camera imaging, retouching and fixing photographs, photographic special effects and filters, rasterizing text, and implementing backgrounds, buttons, themes, image maps, and videos. Industry photo editing applications are utilized.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

• generate and manipulate graphics from a variety of graphics software
• appraise and implement graphics for client and client base
• compare different technologies that can be used to capture and acquire digital images
• examine how color and image resolution affect image quality
• differentiate among Web graphic file formats and determine when to use them
• analyze website concepts and marketing techniques
• evaluate a user's short-term and long-term goals
• collect information, such as photos or existing logos, from users in a non-technical environment

CISW 360 Beginning Flash

Units: 3
Hours: 36 hours LEC; 54 hours LAB
Prerequisite: None.
Advisor: ARTNM 324, CISW 300, and CISW 350
Transferable: CSU
Catalog Date: January 1, 2021

This course introduces the design and the development of Flash-based interactive web sites and applications. Topics include the creation of simple vector-based graphics, buttons, animation and movies, and the integration of sound, raster graphics, and video.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

• create and modify simple Flash objects
• create images and animation using the basic features of Flash
• incorporate simple images on layers to form successful composition
• integrate sound, video, and animation into a web page
• produce interactive interface elements that utilize basic scripting capabilities
• publish multimedia web projects to the Internet
CISW 370 Designing Accessible Websites

This course provides an overview of the methods that are used to design websites for people with disabilities. Current legal requirements for accessible websites, especially the Americans with Disabilities Act (ADA), are emphasized.

Upon completion of this course, the student will be able to:

- describe the current legal requirements for designing websites for people with disabilities.
- compare various tools for the assessment of accessibility of web pages.
- formulate coding strategies for generating accessible websites.
- assess the accessibility levels of various types of websites.
- locate disability and web accessibility resources.
- test specialized browsers and other Internet software for people with disabilities.

CISW 400 Client-side Web Scripting

This course emphasizes the creation of dynamic and interactive web sites using a client-side scripting language such as JavaScript/Ajax. Topics include the Document Object Model of web pages, core features of the client-side scripting language, event handling, control of windows and frames, functions, and form validation.

Upon completion of this course, the student will be able to:

- develop web pages using advanced design concepts with Cascading Style Sheets (CSS) and JavaScript.
- analyze the Document Object Model and the concepts behind asynchronous JavaScript and XML (Ajax).
- define the core structures, statements, and syntax of the JavaScript language.
- construct web pages with structured HTML that incorporates basic JavaScript functions such as mouse rollovers, window popups, slideshows, and form validation.
- develop web pages that use the Ajax Engine.
- produce scripts that integrate the Ajax Engine with server-side scripts written in Php or Perl.
- develop database tables using a web database software such as MySQL.
- integrate server-side scripts with Php or Perl using the Ajax Engine.
- write Ajax scripts that incorporate the canvas element and cookies.

CISW 410 Middleware Web Scripting

This course emphasizes the creation of interactive web sites using a middleware scripting environment such as PHP or Active Server Pages (ASP). Topics include core features of the middleware scripting language, embedding server commands in HTML pages, control structures, functions, arrays, form validations, cookies, environmental variables, email applications, and database-driven web applications.

Upon completion of this course, the student will be able to:

- compare server-side and client-side scripting languages for the web.
- apply the core structures, statements, and syntax of the middleware scripting language.
- write functions using the middleware web scripting language.
- process form data using the middleware scripting language.
- develop web page navigation using the middleware scripting language.
- produce a web-server based database and apply the basic query structure and table joins.
- develop web pages that use session storage or session cookies.
- apply web page design concepts using the middleware scripting language.

CISW 499 Experimental Offering in Computer Information Science - Web

This course provides an overview of the methods that are used to design websites for people with disabilities. Current legal requirements for accessible websites, especially the Americans with Disabilities Act (ADA), are emphasized.

Upon completion of this course, the student will be able to:

- describe the current legal requirements for designing websites for people with disabilities.
- compare various tools for the assessment of accessibility of web pages.
- formulate coding strategies for generating accessible websites.
- assess the accessibility levels of various types of websites.
- locate disability and web accessibility resources.
- test specialized browsers and other Internet software for people with disabilities.
Faculty

Jerome Alexander (/about-us/contact-us/faculty-and-staff-directory/jerome-alexander)
Adjunct Professor
Office: ARC Main
Email: alexan@arc.losrios.edu (mailto:alexan@arc.losrios.edu)

Dan Anaya (/about-us/contact-us/faculty-and-staff-directory/dan-anaya)
Adjunct Professor
Office: ARC Main, Computer Math Complex, 404
Email: anayad@arc.losrios.edu (mailto:anayad@arc.losrios.edu)
Phone: (916) 286-3691 ext. 12527

Damon Antos (/about-us/contact-us/faculty-and-staff-directory/damon-antos)
Professor
Office: ARC Main, Computer Math Complex, 404b
Email: AntosD@arc.losrios.edu (mailto:AntosD@arc.losrios.edu)
Phone: (916) 494-8252

Tak Auyeung (/about-us/contact-us/faculty-and-staff-directory/tak-auyeung)
Professor
Office: ARC Main, Computer Math Complex, 404c
Email: AuyeunT@arc.losrios.edu (mailto:AuyeunT@arc.losrios.edu)
Phone: (916) 484-8250

Carl Chapek (/about/faculty-and-staff-directory/carl-chapek)
Adjunct Professor
Office: ARC Main, Computer Math Complex, 404
Email: ChapekC@arc.losrios.edu (mailto:ChapekC@arc.losrios.edu)
Phone: (916) 286-3691 ext. 12275

Gary Cotton (/about-us/contact-us/faculty-and-staff-directory/gary-cotton)
Adjunct Professor
Office: ARC Main, Computer Math Complex, 404
Email: CottonG@arc.losrios.edu (mailto:CottonG@arc.losrios.edu)
Phone: (916) 286-3691 ext. 12263

Tom Dolce (/about-us/contact-us/faculty-and-staff-directory/tom-dolce)
Adjunct Professor
Office: ARC Main, Computer Math Complex, 404
Email: dolcet@arc.losrios.edu (mailto:dolcet@arc.losrios.edu)
Phone: (916) 286-3691 ext. 12068

Jeanne Duff (/about-us/contact-us/faculty-and-staff-directory/jeanne-duff)
Adjunct Professor
Office: ARC Main, Computer Math Complex, 404
Email: duffj@arc.losrios.edu (mailto:duffj@arc.losrios.edu)
Phone: (916) 286-3691 ext. 12389

Laurence Dumais (/about-us/contact-us/faculty-and-staff-directory/laurence-dumais)
Professor
Office: ARC Main, Computer Math Complex, 404a
Email: DumaisL@arc.losrios.edu (mailto:DumaisL@arc.losrios.edu)
Phone: (916) 484-8854

Daniel Fernandez (/about-us/contact-us/faculty-and-staff-directory/daniel-fernandez)
Adjunct Professor
Office: ARC Main
Email: FernanD2@arc.losrios.edu (mailto:FernanD2@arc.losrios.edu)
Phone: (916) 286-3691 ext. 12110

Daniel Gilbert-Valencia (/about-us/contact-us/faculty-and-staff-directory/daniel-gilbert-valencia)
Professor
Office: ARC Main, Computer Math Complex, 405k

Wesley Green (/about-us/contact-us/faculty-and-staff-directory/wesley-green)
Professor
Office: ARC Main, Computer Math Complex, 405b
Mark Havener
Adjunct Professor
Office: ARC Main
Email: HaveneM@arc.losrios.edu
Phone: (916) 484-8006

Becky Hayes
Professor
Office: ARC Main, Computer Math Complex, 405i
Email: HayesR@arc.losrios.edu
Phone: (916) 484-8672

Ryan Hermle
Professor
Office: ARC Main, Computer Math Complex, 405J
Email: hermler@arc.losrios.edu
Phone: (916) 484-8006

Payam Hojjat
Adjunct Professor
Office: ARC Main
Email: HojjatP@arc.losrios.edu
Phone: (916) 286-3691 ext. 12142

Kristopher Johnson
Adjunct Professor
Office: ARC Main
Email: johnsk@arc.losrios.edu
Phone: (916) 286-3691 ext. 12161

Rebecca Leveille
Adjunct Professor
Office: ARC Main
Email: leveilr@arc.losrios.edu
Phone: (916) 286-3691 ext. 12041

Michael L’Estrange
Professor
Office: ARC Main, Computer Math Complex, 405f
Email: LestraM@arc.losrios.edu
Phone: (916) 484-8147

Stephen Magee
Adjunct Professor
Office: ARC Main, Computer Math Complex, 404
Email: MageeS@arc.losrios.edu
Phone: (916) 286-3691 ext. 12167

Kamiyar Maleky
Adjunct Professor
Office: ARC Main, Computer Math Complex, 404
Email: MalekyK@arc.losrios.edu
Phone: (916) 286-3691 ext. 12179

Payam Narvand
Adjunct Professor
Office: ARC Main
Email: NarvanP@arc.losrios.edu
Phone: (916) 286-3691 ext. 12209

Randy Nordell
Professor
Office: ARC Main, Computer Math Complex, 404
Email: NordellR@arc.losrios.edu
Phone: (916) 484-8006

Leslie Reeves
Universal Design for Learning Coordinator
Office: ARC Main
Email: ReevesL@arc.losrios.edu
Phone: (916) 484-8611
Ashley Richardson (/about-us/contact-us/faculty-and-staff-directory/ashley-richardson)
Adjunct Professor
Office: ARC Main
Email: RicharA@arc.losrios.edu (mailto:RicharA@arc.losrios.edu)
Phone: (916) 286-3691 ext. 12131

Iraj Sabzevary (/about-us/contact-us/faculty-and-staff-directory/iraj-sabzevary)
Professor
Office: ARC Main, Computer Math Complex, 405h
Email: SabzevI@arc.losrios.edu (mailto:SabzevI@arc.losrios.edu)
Phone: (916) 484-8598

Roy Salisbury (/about-us/contact-us/faculty-and-staff-directory/roy-salisbury)
Adjunct Professor
Office: ARC Main, Computer Math Complex, 404
Email: Salisbr@arc.losrios.edu (mailto:Salisbr@arc.losrios.edu)
Phone: (916) 286-3691 ext. 12077

Kahkashan Shaukat (/about-us/contact-us/faculty-and-staff-directory/kahkashan-shaukat)
Assistant Professor
Office: ARC Main, Computer Math Complex, 405e
Email: ShaukaK@arc.losrios.edu (mailto:ShaukaK@arc.losrios.edu)
Phone: (916) 484-8661

Ernest Shih (/about-us/contact-us/faculty-and-staff-directory/ernest-shih)
Adjunct Professor
Office: ARC Main, Computer Math Complex, 404
Email: shihe@arc.losrios.edu (mailto:shihe@arc.losrios.edu)
Phone: (916) 286-3691 ext. 12344

Clarence Stokes (/about-us/contact-us/faculty-and-staff-directory/clarence-stokes)
Professor
Office: ARC Main, Computer Math Complex, 405g
Email: StokesC@arc.losrios.edu (mailto:StokesC@arc.losrios.edu)
Phone: (916) 484-8968

Bill Theiss (/about-us/contact-us/faculty-and-staff-directory/bill-theiss)
Adjunct Professor
Office: ARC Main, Computer Math Complex, 404
Email: TheissW@arc.losrios.edu (mailto:TheissW@arc.losrios.edu)
Phone: (916) 286-3691 ext. 12304

Alex Torres (/about-us/contact-us/faculty-and-staff-directory/alex-torres)
Adjunct Professor
Office: ARC Main
Email: TorresA@arc.losrios.edu (mailto:TorresA@arc.losrios.edu)
Phone: (916) 286-3691 ext. 12135

ARC Computer Information Science Department
VISIT COMPUTER INFORMATION SCIENCE DEPARTMENT ➤ (/ACADEMICS/BUSINESS-AND-COMPUTER-SCIENCE-DIVISION-OFFICE/COMPUTER-INFORMATION-SCIENCE)

Cybersecurity and Information Assurance
Find cybersecurity-related resources, including information about our instructors, programs, news, and events.

CYBERSECURITY AND INFORMATION ASSURANCE ➤ (HTTPS://ARC.LOSRIOS.EDU/LRCIAC)